cython与python运行效率的对比分析

博客介绍了Cython的环境配置,包括在Ubuntu 18.04系统下,结合Anaconda3和Python 3.7,配置Cython 0.28。还提及了创建Cython文件,并说明了转移到文件所在目录后使用命令进行编译,同时给出参考文章链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# Python运行文件,命名为cal_fib.py
import time
def fib(n):
    begin=time.time()
    a,b=0,1
    for i in range(n):
        a,b=a+b,a
    end=time.time()
    print(end-begin)
    return a
fib(1000000)

cython环境配置:ubuntu18.04,anaconda3,python3.7,cython 0.28

cython第一个文件:

# 命名为 cal_fib.pyx
import time
def fib(n):
    begin=time.time()
    a,b=0,1
    for i in range(n):
        a,b=a+b,a
    end=time.time()
    print(end-begin)
    return a

cython 第二个文件:

from distutils.core import setup
from Cython.Build import cythonize

setup(name='test',
      ext_modules=cythonize("cal_fib.pyx"))

转移到cython文件所在的目录,使用命令进行编译:

python setup.py build_ext --inplace

之后会生成编译好的文件。然后在Python中,

from cal_fib import fib

fib(100000)

可以得到运行所需时间和得到的数值:

运行时间为0.1033秒,得到的斐波那契数字太大,忽略

使用Python方法运行,得到的时间为9.0秒

在这个案例中,cython运行的效率比Python提高了90倍左右

# 如果计算的斐波那契数字比较小,两者相差的效率不会这么大。随着计算级别增加,cython的效率可能随之提高。

# 参考文章:http://docs.cython.org/en/latest/src/quickstart/build.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云金杞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值