DL之IDE:深度学习环境安装之查看本地的电脑显卡是否支持GPU以及需要安装匹配的CUDA版本、tensorflow版本、torch版本等

本文指导如何检查电脑GPU支持情况,安装CUDA和cuDNN,以及查询TensorFlow和PyTorch版本。步骤包括查看GPU支持、安装CUDA和cuDNN,通过pip和Python代码查询TensorFlow及PyTorch版本,并根据硬件配置找到匹配的深度学习框架版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DL之IDE:深度学习环境安装之查看本地的电脑显卡是否支持GPU以及需要安装匹配的CUDA版本、tensorflow版本、torch版本等

目录

查看本地的电脑显卡是否支持GPU以及tensorflow_gpu版本

1、第一步,查看自己的电脑显卡是否支持GPU

2、第二步,安装cuDNN和CUDA版本

3、第三步,查看本机已安装的tensorflow版本、torch版本

T1、pip list和conda list查询

T2、利用python代码查询

4、第4步,查看基于本机电脑GPU所正确匹配的两大深度学习框架正确版本:tensorflow版本、torch版本

T1、查看tensorflow与本机GPU匹配的版本

T2、查看torch与本机GPU匹配的版本

DL之IDE:深度学习环境安装之pytorch/torchvision版本和CUDA版本匹配列表、利用Pytorch查看自己电脑上CUDA版本、基于CUDA版本安装Pytorch命令行详解之详细攻略


查看本地的电脑显卡是否支持GPU以及tensorflow_gpu版本

1、第一步,查看自己的电脑显卡是否支持GPU


2、第二步,安装cuDNN和CUDA版本

相关文章CUDA:根据本地电脑的NVIDIA显卡驱动版本去正确匹配待安装的CUDA版本之详细攻略_一个处女座的程序猿-CSDN博客

CUDA下载官网CUDA Toolkit 11.5 Update 1 Downloads | NVIDIA Developer


3、第三步,查看本机已安装的tensorflow版本、torch版本

T1、pip list和conda list查询

T2、利用python代码查询

import tensorflow as tf
print(tf.__version__)

4、第4步,查看基于本机电脑GPU所正确匹配的两大深度学习框架正确版本:tensorflow版本、torch版本

T1、查看tensorflow与本机GPU匹配的版本

import tensorflow as tf
print(tf.__version__)

tensorflow版本为2.6.0,而没有安装tensorflow_gpu,根据cuDNN版本和CUDA版本选择对应的tensorflow_gpu版本即可!

地址:在 Windows 环境中从源代码构建  |  TensorFlow


T2、查看torch与本机GPU匹配的版本

DL之IDE:深度学习环境安装之pytorch/torchvision版本和CUDA版本匹配列表、利用Pytorch查看自己电脑上CUDA版本、基于CUDA版本安装Pytorch命令行详解之详细攻略

DL之IDE:深度学习环境安装之pytorch/torchvision版本和CUDA版本匹配列表、利用Pytorch查看自己电脑上CUDA版本、基于CUDA版本安装Pytorch命令行详解之详细攻略_查看torchvision版本-CSDN博客

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值