DL之IDE:深度学习环境安装之查看本地的电脑显卡是否支持GPU以及需要安装匹配的CUDA版本、tensorflow版本、torch版本等
目录
查看本地的电脑显卡是否支持GPU以及tensorflow_gpu版本
3、第三步,查看本机已安装的tensorflow版本、torch版本
4、第4步,查看基于本机电脑GPU所正确匹配的两大深度学习框架正确版本:tensorflow版本、torch版本
DL之IDE:深度学习环境安装之pytorch/torchvision版本和CUDA版本匹配列表、利用Pytorch查看自己电脑上CUDA版本、基于CUDA版本安装Pytorch命令行详解之详细攻略
查看本地的电脑显卡是否支持GPU以及tensorflow_gpu版本
1、第一步,查看自己的电脑显卡是否支持GPU
2、第二步,安装cuDNN和CUDA版本
相关文章:CUDA:根据本地电脑的NVIDIA显卡驱动版本去正确匹配待安装的CUDA版本之详细攻略_一个处女座的程序猿-CSDN博客
CUDA下载官网:CUDA Toolkit 11.5 Update 1 Downloads | NVIDIA Developer
3、第三步,查看本机已安装的tensorflow版本、torch版本
T1、pip list和conda list查询
T2、利用python代码查询
import tensorflow as tf
print(tf.__version__)
4、第4步,查看基于本机电脑GPU所正确匹配的两大深度学习框架正确版本:tensorflow版本、torch版本
T1、查看tensorflow与本机GPU匹配的版本
import tensorflow as tf
print(tf.__version__)
tensorflow版本为2.6.0,而没有安装tensorflow_gpu,根据cuDNN版本和CUDA版本选择对应的tensorflow_gpu版本即可!
地址:在 Windows 环境中从源代码构建 | TensorFlow