matlab_归一化反归一化_mapminmax

当我们需要对多个指标进行拟合、作图、相干性分析等操作时,如果不同指标之间的量级差距过大会直接影响最终结果,因此我们需要对数据归一化处理,结束后还可以反归一化处理回到真实值。下面介绍matlab中的归一化函数mapminmax的实用操作:

mapminmax函数是按行操作的,输入数组如果是一维的,需要是行向量,如果是二维的,则按行归一化。

1. [Y,PS] = mapminmax(X,Ymin,Ymax)

Y是按行归一化后的数组;PS是训练样本的数据的映射,即PS中包含了训练数据的最大值和最小值,如果不需要反归一化或者对所有指标都采用相同的映射就可以不写;X是需要归一化的数据,注意考虑是否要转置;Ymin和Ymax是期望的每一行的最小值与最大值,不写默认是-1和1,一般都写成0和1。

clc;clear;
x=[2,3,4,5,6;7,8,9,10,11]
guiyix=mapminmax(x,0,1)

2. Y = mapminmax(‘apply’,X,PS)

在用神经网络进行训练以及测试时,就用到了 ‘apply’ 。使用神经网络时,我们有训练测试两大样本集,上式的X是测试样本,对于测试样本来说,归一化应该和训练样本一致即最大值和最小值应该是训练集的最大值与最小值。假设y是测试样本,一共两个测试样本,则代码如下:

clc;clear;
x=[2,3,4,5,6;7,8,9,10,11];
y=[2,3;4,5];
[guiyix,ps]=mapminmax(x,0,1);
mapminmax('apply',y,ps)

3. X = mapminmax(‘rever

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海阔平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值