AI学习指南机器学习篇-深度Q网络(Deep Q-Networks,DQN)
一、引言
深度Q网络(Deep Q-Networks,DQN)是一种结合了深度学习和强化学习的方法,被广泛应用于解决各种复杂的决策问题。本文将介绍DQN的基本原理和结构,并详细解释如何使用神经网络逼近Q值函数。
二、DQN的基本原理
DQN是一种基于Q学习(Q-Learning)的强化学习算法,在原始Q学习的基础上引入了深度神经网络来逼近Q值函数。其基本原理是通过学习一个值函数Q(s, a)来估计在状态s下采取动作a的价值,进而选择使得Q值最大的动作来实现最优策略。
具体来说,DQN算法包含以下几个关键步骤:
1. 经验回放(Experience Replay)
经验回放是DQN算法的一个重要组成部分,它通过存储Agent与环境交互的经验数据(即状态-动作-奖励-下一个状态四元组)并随机采样来训练神经网络,从而提高样本效率和稳定性。
2. 目标网络(Target Network)
为了解决DQN算法中目标Q值的不稳定性问题,引入了目标网络来固定目标Q值的计算,减少目标值的更新对当前Q值的干扰。
3. Q值函数的逼近
DQN通过一个神经网络来逼近Q值函数,将环境的状态作为输入,输出每个动作对应的