AI学习指南RAG篇(1)-RAG是什么

在这里插入图片描述

一、引言

在人工智能领域,尤其是自然语言处理(NLP)中,RAG(Retrieval-Augmented Generation,检索增强生成)架构正逐渐成为一种重要的技术范式。它结合了检索和生成两种方法的优势,能够显著提升模型在问答、文本生成等任务中的表现。本文将详细介绍 RAG 的定义、起源及其在人工智能领域的应用价值。

二、RAG 的定义

1. 什么是 RAG?

RAG 是一种结合了 检索(Retrieval)生成(Generation) 的架构。其核心思想是通过从外部知识库中检索相关信息,并将其融入到生成模型中,从而提升生成内容的准确性和相关性。

2. RAG 的工作流程

RAG 的工作流程可以分为以下几个步骤:

  1. 用户输入问题:用户提出一个问题或请求。
  2. 语义检索:系统从外部知识库中检索与问题相关的文档或片段。
  3. 信息融合:将检索到的信息与用户的输入结合,形成上下文。
  4. <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值