文章目录
一、引言
在人工智能领域,尤其是自然语言处理(NLP)中,RAG(Retrieval-Augmented Generation,检索增强生成)架构正逐渐成为一种重要的技术范式。它结合了检索和生成两种方法的优势,能够显著提升模型在问答、文本生成等任务中的表现。本文将详细介绍 RAG 的定义、起源及其在人工智能领域的应用价值。
二、RAG 的定义
1. 什么是 RAG?
RAG 是一种结合了 检索(Retrieval) 和 生成(Generation) 的架构。其核心思想是通过从外部知识库中检索相关信息,并将其融入到生成模型中,从而提升生成内容的准确性和相关性。
2. RAG 的工作流程
RAG 的工作流程可以分为以下几个步骤:
- 用户输入问题:用户提出一个问题或请求。
- 语义检索:系统从外部知识库中检索与问题相关的文档或片段。
- 信息融合:将检索到的信息与用户的输入结合,形成上下文。
- <