AI学习指南RAG篇(5)-RAG的系统架构

在这里插入图片描述

一、引言

RAG(Retrieval-Augmented Generation,检索增强生成)技术通过结合信息检索与生成模型的优势,有效解决了大语言模型(LLM)的局限性。RAG系统的架构主要包括四个核心组件:知识库处理模块向量化模块检索引擎生成模块。本文将详细介绍这四个核心组件及其工作原理,并通过实际示例展示RAG系统的架构。

二、RAG系统的四个核心组件

1. 知识库处理模块

1.1 文档收集

知识库处理模块是RAG系统的基础,负责收集和管理大量的文档数据。这些文档可以来自多种来源,如网页、书籍、数据库等。文档收集的目的是为后续的检索和生成提供丰富的数据支持。

1.2 文档预处理

收集到的文档需要进行预处理,包括清洗、分块和标注等操作。清洗操作用于去除无关内容,如广告、噪声等;分块操作将长文档分割成较短的片段,便于后续的检索和生成;标注操作为文档添加元数据,如类别、标签等,提升检索的精度。

1.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值