文章目录
一、引言
RAG(Retrieval-Augmented Generation,检索增强生成)技术通过结合信息检索与生成模型的优势,有效解决了大语言模型(LLM)的局限性。RAG系统的架构主要包括四个核心组件:知识库处理模块、向量化模块、检索引擎和生成模块。本文将详细介绍这四个核心组件及其工作原理,并通过实际示例展示RAG系统的架构。
二、RAG系统的四个核心组件
1. 知识库处理模块
1.1 文档收集
知识库处理模块是RAG系统的基础,负责收集和管理大量的文档数据。这些文档可以来自多种来源,如网页、书籍、数据库等。文档收集的目的是为后续的检索和生成提供丰富的数据支持。
1.2 文档预处理
收集到的文档需要进行预处理,包括清洗、分块和标注等操作。清洗操作用于去除无关内容,如广告、噪声等;分块操作将长文档分割成较短的片段,便于后续的检索和生成;标注操作为文档添加元数据,如类别、标签等,提升检索的精度。