文章目录
一、引言
在RAG(Retrieval-Augmented Generation,检索增强生成)系统的开发和部署过程中,性能调优是提升系统效果的关键步骤。通过合理的调优方法和技巧,可以显著提高RAG系统的性能,包括检索结果的相关性和生成内容的准确性。本文将分享一些常用的RAG系统性能调优方法和技巧,包括检索结果的重排序、上下文压缩等,并通过实际示例展示其应用。
二、性能调优方法和技巧
1. 检索结果的重排序
1.1 重排序的原理
检索结果的重排序(Re-Ranking)是指在初步检索结果的基础上,使用更复杂的模型对结果进行重新排序,以提高相关性。初步检索通常使用向量相似度搜索,虽然快速但可能会错过一些上下文细微差别。重排序模型在查询时同时处理查询和文档,能够捕获更多上下文信息,从而提高检索结果的质量。
1.2 重排序的实现
重排序可以通过使用专门的重排序模型来实现,这些模型通常基于深度学习,能够更好地理解查询和文档之间的语义关系。以下是一个使用Cohere Reranker对检索结果进行重排序的示例: