文章目录
一、引言
RAG(Retrieval-Augmented Generation,检索增强生成)技术作为一种创新的基于深度学习的大模型文档搜索框架,近年来在人工智能领域展现出了巨大的应用潜力和价值。随着技术的不断发展和完善,RAG技术在未来将继续发挥重要作用,推动人工智能领域的创新和进步。本文将探讨RAG技术的未来发展趋势,包括多模态RAG、实时检索等方面。
二、RAG技术的未来发展趋势
1. 多模态RAG
1.1 多模态RAG的定义
多模态RAG是指将RAG技术从传统的文本检索扩展到包括图像、视频、音频等多种模态的数据。这种技术通过融合不同模态的信息,为用户提供更全面、更丰富的交互体验。[96]
1.2 多模态RAG的实现路径
多模态RAG的实现主要有以下几种路径:
- 基于语义抽取的多模态RAG:通过传统的图像识别技术(如OCR)从图像中抽取文字、表格和图片等元素,然后将这些元素转换成文本格式,以便于后续的信息检索与分析。
- 基于Transformer架构的多