AI学习指南RAG篇(15)-技术发展趋势

在这里插入图片描述

一、引言

RAG(Retrieval-Augmented Generation,检索增强生成)技术作为一种创新的基于深度学习的大模型文档搜索框架,近年来在人工智能领域展现出了巨大的应用潜力和价值。随着技术的不断发展和完善,RAG技术在未来将继续发挥重要作用,推动人工智能领域的创新和进步。本文将探讨RAG技术的未来发展趋势,包括多模态RAG、实时检索等方面。

二、RAG技术的未来发展趋势

1. 多模态RAG

1.1 多模态RAG的定义

多模态RAG是指将RAG技术从传统的文本检索扩展到包括图像、视频、音频等多种模态的数据。这种技术通过融合不同模态的信息,为用户提供更全面、更丰富的交互体验。[96]

1.2 多模态RAG的实现路径

多模态RAG的实现主要有以下几种路径:

  • 基于语义抽取的多模态RAG:通过传统的图像识别技术(如OCR)从图像中抽取文字、表格和图片等元素,然后将这些元素转换成文本格式,以便于后续的信息检索与分析。
  • 基于Transformer架构的多
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值