AI学习指南RAG篇(18)-模型训练与优化

在这里插入图片描述

一、引言

RAGFlow是一个基于深度文档理解的开源RAG(检索增强生成)引擎,旨在解决现有RAG技术在数据处理和生成答案方面的挑战。本文将介绍如何使用RAGFlow进行模型训练和优化,以提高检索和生成的准确性。

二、模型训练

1. 数据准备

  • 数据集:收集和整理领域相关的文本数据,如论文、文档、FAQ等。
  • 知识库:构建一个结构化的知识库,包含领域内的关键概念、实体和关系。

2. 模型选择与训练

  • 预训练模型:选择一个适合的预训练语言模型(如GPT、BERT等)作为基础模型。
  • 微调:使用领域特定的数据对模型进行微调,以提高其在垂直领域的表现。

3. 集成RAGFlow

  • 检索模块:使用RAGFlow的检索模块,从知识库中检索相关信息。
  • 生成模块:将检索
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值