文章目录
一、引言
RAGFlow是一个基于深度文档理解的开源RAG(检索增强生成)引擎,旨在解决现有RAG技术在数据处理和生成答案方面的挑战。本文将介绍如何使用RAGFlow进行模型训练和优化,以提高检索和生成的准确性。
二、模型训练
1. 数据准备
- 数据集:收集和整理领域相关的文本数据,如论文、文档、FAQ等。
- 知识库:构建一个结构化的知识库,包含领域内的关键概念、实体和关系。
2. 模型选择与训练
- 预训练模型:选择一个适合的预训练语言模型(如GPT、BERT等)作为基础模型。
- 微调:使用领域特定的数据对模型进行微调,以提高其在垂直领域的表现。
3. 集成RAGFlow
- 检索模块:使用RAGFlow的检索模块,从知识库中检索相关信息。
- 生成模块:将检索