如何提高 YoloDotNet 图像目标检测的准确率?


一、数据准备与增强

1、高质量数据集

  • 收集大量具有代表性的图像数据,涵盖各种场景、光照条件、目标姿态等。确保数据集中包含不同类型的目标实例,以及各种复杂背景下的目标。例如,在进行交通标志检测时,收集不同天气、不同时间段、不同道路环境下的交通标志图像。
  • 对数据进行仔细标注,确保标注的准确性和一致性。可以使用专业的标注工具,并由多个标注人员进行交叉验证,以提高标注质量。

2、数据增强

  • 应用数据增强技术可以增加数据集的多样性,提高模型的泛化能力。常见的数据增强方法包括随机旋转、翻转、缩放、裁剪、颜色变换等。例如,可以使用以下代码进行随机旋转和翻转的数据增强:
using System.Drawing;
using System.Drawing
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

0仰望星空007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值