政安晨:【Keras机器学习示例演绎】(二十一)—— 调查视觉转换器的表征

本文深入探讨了ViT模型在图像处理中的表征学习能力,通过平均注意力距离、注意力推广、注意力热图、学习到的投影滤波器可视化和位置变化可视化等方法,展示了不同ViT模型的特性。研究发现,更大规模数据预训练的ViT模型更倾向于全局信息处理。此外,DINO模型在注意力热图生成方面表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

简介

考虑过的模型

导入

常数

数据实用程序

加载并显示测试图像

加载模型

关于模型的更多信息

使用模型进行常规推理

方法 I:平均注意距离

检查图谱

方法二:关注推广

检查图谱

方法三:注意力热图

检查图谱

方法四:可视化学习到的投影滤波器

检查绘图

方法五:位置变化可视化

检查绘图

注释


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:研究不同 Vision 变形金刚变体所学到的表征。

简介


在本示例中,我们将研究不同视觉转换器(ViT)模型学习到的表征。本示例的主要目的是让我们深入了

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

政安晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值