政安晨:【Keras机器学习示例演绎】(三十四)—— FixRes:修复训练-测试分辨率差异

本文介绍FixRes技术,通过调整训练和测试的图像分辨率差异提高深度学习模型性能。首先在低分辨率数据集上训练模型,然后在高分辨率数据集上微调,仅解冻最后的批量归一化层和分类层。实验证明,这种方法能显著提升模型性能,缩短训练时间并减少GPU内存使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

简介

导入

加载 tf_flowers 数据集

数据预处理工具

准备数据集

可视化数据集

模型训练实用程序

冻结所有层,最后的批量归一化层除外


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:减少训练集和测试集之间的分辨率差异。

简介


在训练和测试视觉模型时使用相同的输入图像分辨率是一种常见的做法。

然而,正如《修复训练-测试分辨率差异》(Touvron 等人)一书所研究的那样,这种做法会导致性能不达标。

数据增强是深

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

政安晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值