政安晨:【Keras机器学习示例演绎】(三十五)—— 使用 LayerScale 的类注意图像变换器

本文介绍了CaiT模型,针对视觉变换器在深度增加时性能饱和的问题,提出LayerScale和类注意力层的解决方案。通过Keras实现CaiT模型的各个模块,包括LayerScale层、随机深度层、类注意力和会说话的头注意力等,同时展示模型的预训练、推理和注意力层可视化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

简介

导入

层刻度层

随机深度层

类注意力

会说话的头注意力

前馈网络

其他模块

拼凑碎片:CaiT 模型

定义模型配置

模型实例化

加载预训练模型

推理工具

加载图像

获取预测

关注层可视化

结论


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:实现配备关注类和 LayerScale 的图像转换器。

简介

在本文中,我们将实现 Touvron 等人在《深入研究图像变换器》(Going deeper with Image Transformers)一书中提出的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

政安晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值