政安晨:【Keras机器学习示例演绎】(四十二)—— 使用 KerasNLP 和 tf.distribute 进行数据并行训练

本文介绍了如何使用KerasNLP和tf.distribute进行数据并行训练,包括同步数据并行性和分布式训练的两种设置。在多GPU环境下,展示了如何配置MirroredStrategy进行模型训练,以及如何处理批量大小和学习率。通过实例演示了BERT模型在wikitext-2数据集上的训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

简介

导入

基本批量大小和学习率

计算按比例分配的批量大小和学习率


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:使用 KerasNLP 和 tf.distribute 进行数据并行训练。

简介


分布式训练是一种在多台设备或机器上同时训练深度学习模型的技术。它有助于缩短训练时间,并允许使用更多数据训练更大的模型。KerasNLP 是一个为自然语言处理任务(包括分布式训练)提供工具和实用程序的库。

在本文中,我们将使用 KerasNLP 在 wikitext-2 数据集(维基百

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

政安晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值