政安晨:【Keras机器学习示例演绎】(四十五)—— 使用变换器进行命名实体识别

本文介绍如何使用HuggingFace的数据集库和Keras构建一个基于Transformer的NER模型,通过CoNLL 2003数据集进行训练,并计算F1分数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

简介

安装 HuggingFace 的开源数据集库

将 NER 模型类构建为 keras.Model 子类

从数据集库加载 CoNLL 2003 数据集并进行处理

制作 NER 标签查找表

编译和拟合模型

指标计算

结论


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:使用来自 CoNLL 2003 共享任务的 Transformers 和数据进行 NER。

简介

命名实体识别(NER)是识别文本中命名实体的过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

政安晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值