政安晨的AI大模型训练实践四:准备一个合适的模型微调,先试一下,比如:DeepSeek-R1-14B-Distill

政安晨的个人主页:政安晨

欢迎 👍点赞✍评论⭐收藏

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

我们尝试使用 DeepSeek-R1-14B-Distill这个DeepSeek R1 14B的蒸馏模型来微调。

微调一个有一定参数规模的大模型比如14B的DeepSeek-R1大概准备200G以上的空间。

参照我前面的文章所示,激活虚拟环境,设置魔塔社区下载模型,启动webui界面:

conda activate xxx_llamafactory

export USE_MODELSCOPE_HUB=1
llamafactory-cli webui

我们点击Chat标签页中的加载模型,从命令行控制台中可以看出加载过程:

其实从上图可以看出来,模型文件还是很大的,所以,要准备好足够的存储空间。

下载完成:

加载模型后,可以先进行推理测试:

模型可以正常使用后,接下来就可以SFT微调了。

其实,刚开始尝试大模型微调的时候,建议使用参数相对较少的模型进行,参数太多比较吃显存,太慢,不太好直接观察。

回到训练选项卡中:

选择一个数据集并且可以预览它:

把输出路径填一下,使用默认参数先试一把:

中间可能会出现因为显存不足而失败的情况,就像这样:

重新启动一下,训练的时候不要先去Chat预览,那样会吃掉显存。

如果还是显存不够,说明你的服务器还不能支撑这个规模的模型训练,找一个云上的吧。


先用起来再学习是个比较好的思路。

<think>好的,我现在需要处理用户关于DeepSeek-1.5B模型的查询。首先,用户想要下载、使用教程和相关文档的信息。根据用户提供的参考引用[1],里面提到使用LLaMAFactory工具训练DeepSeek-R1-1.5B-Distill模型,但用户现在问的是DeepSeek-1.5B,可能两者有关联,或者用户可能有拼写错误?我需要确认这两个模型是否相同,或者是否是不同的版本。不过,根据常见的命名规则,DeepSeek-R1-1.5B-Distill可能是DeepSeek-1.5B的蒸馏版本,或者是某个特定版本。可能需要进一步核实。 接下来,用户需要下载和使用教程。通常,模型的官方文档和GitHub仓库是最直接的资源。我需要检查是否有DeepSeek-1.5B的官方发布渠道,比如Hugging Face Model Hub或者官方的GitHub仓库。例如,许多模型都会托管在Hugging Face上,用户可以通过`transformers`库直接加载。因此,我应该建议用户访问Hugging Face网站搜索DeepSeek-1.5B,并查看是否有相关的模型卡和代码示例。 另外,用户提到的LLaMAFactory工具在引用[1]中出现过,可能这个工具支持训练微调DeepSeek模型。因此,我应该建议用户查阅LLaMAFactory的文档,了解如何使用该工具进行模型训练,包括数据准备、配置参数等步骤。可能需要提供GitHub链接或官方文档链接。 关于使用教程,除了官方文档,可能还有社区教程或博客文章,比如实践记录。如果用户提供的引用[1]是来自某个博客或文章,可以建议用户参考该资源,同时结合官方文档。此外,Hugging Face的示例代码和文档通常包含如何加载模型、进行推理的步骤,这也是用户需要的。 需要注意用户可能遇到的常见问题,例如模型下载需要权限、依赖装(如PyTorch、Transformers库)、硬件要求(如GPU显存)。因此,在回答中应该提到这些潜在的问题,并建议用户检查环境配置。 最后,生成相关问题需要考虑用户可能的后续需求,例如模型的应用场景、微调方法、性能优化等。这些问题可以帮助用户进一步探索模型的使用。</think>关于DeepSeek-1.5B模型的下载、使用教程和文档信息,以下是分步说明: --- ### 一、模型下载 1. **官方渠道** DeepSeek系列模型通常托管在Hugging Face平台。访问以下链接搜索模型- Hugging Face模型库:https://huggingface.co/DeepSeek 搜索`DeepSeek-1.5B`或相关变体(如`DeepSeek-R1-1.5B-Distill`),查看模型卡(Model Card)获取下载指令。 2. **通过代码直接加载** 若模型已上传至Hugging Face,可使用`transformers`库加载: ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("DeepSeek/DeepSeek-1.5B") tokenizer = AutoTokenizer.from_pretrained("DeepSeek/DeepSeek-1.5B") ``` **注意**:需提前装依赖: ```bash pip install transformers torch ``` --- ### 二、使用教程与文档 1. **官方文档** - 查看Hugging Face模型页面的`Usage Example`或`Model Card`,通常包含代码示例和参数说明[^1]。 - 访问DeepSeek官方GitHub仓库(如有),例如:https://github.com/deepseek-ai 2. **LLaMAFactory工具集成** 根据引用[1],可使用LLaMAFactory工具训练/微调模型- 参考LLaMAFactory文档:https://github.com/hiyouga/LLaMA-Factory - 关键步骤: - 数据准备(格式需符合工具要求) - 配置文件修改(选择`DeepSeek-1.5B`作为基础模型- 运行训练脚本(示例): ```bash python src/train_bash.py --model_name_or_path DeepSeek/DeepSeek-1.5B --dataset your_data --output_dir outputs ``` 3. **社区教程** - 实践记录提供了最小化训练示例,适合快速入门。 - 搜索知乎、CSDN等平台,关键词如“DeepSeek-1.5B 微调教程”。 --- ### 三、注意事项 1. **硬件要求** - 1.5B模型需约6GB GPU显存(FP16精度),若显存不足可尝试量化(如`bitsandbytes`库)。 2. **模型权限** - 部分模型需申请使用权限,检查Hugging Face页面的License条款。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

政安晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值