给你一个由正整数组成的数组 nums 。
数字序列的 最大公约数 定义为序列中所有整数的共有约数中的最大整数。
例如,序列 [4,6,16] 的最大公约数是 2 。
数组的一个 子序列 本质是一个序列,可以通过删除数组中的某些元素(或者不删除)得到。
例如,[2,5,10] 是 [1,2,1,2,4,1,5,10] 的一个子序列。
计算并返回 nums 的所有 非空 子序列中 不同 最大公约数的 数目 。
示例 1:
输入:nums = [6,10,3]
输出:5
解释:上图显示了所有的非空子序列与各自的最大公约数。
不同的最大公约数为 6 、10 、3 、2 和 1 。
示例 2:
输入:nums = [5,15,40,5,6]
输出:7
数论题~
这道题目其实没有那么复杂,因为数据范围比较小,所以我们可以遍历
[
1
,
200000
]
[1,200000]
[1,200000] 内的所有数
i
i
i,对每个数找它在数组中出现的倍数
x
1
,
x
2
,
x
3
,
⋯
,
x
n
x_1,x_2,x_3,\cdots,x_n
x1,x2,x3,⋯,xn,然后判断
g
c
d
(
x
1
,
x
2
,
x
3
,
⋯
,
x
n
)
=
i
gcd(x_1,x_2,x_3,\cdots,x_n)=i
gcd(x1,x2,x3,⋯,xn)=i 即可,复杂度
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn),注意标记数组里的数时别用
m
a
p
map
map,否则会超时,AC代码如下:
class Solution {
bool mp[200005];
public:
int countDifferentSubsequenceGCDs(vector<int> &nums) {
int ans = 0;
for (auto i:nums) mp[i] = 1;
for (int i = 1; i <= 200000; i++) {
int gcd = -1;
for (int j = i; j <= 200000; j += i) {
if (mp[j]) {
if (gcd == -1) gcd = j;
else gcd = __gcd(gcd, j);
}
}
if (gcd == i) ans++;
}
return ans;
}
};