一.函数极限的定义
在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这一变化过程中函数的极限。
1.自变量趋于有限值时函数的极限
去心邻域
以x0x_0x0为中心的任何开区间称为点x0x_0x0的邻域,记作U(x0)U(x_0)U(x0);在U(x0)U(x_0)U(x0)中去掉中心x0x_0x0后,称为点x0x_0x0的去心邻域,记作U˚(x0)\mathring{U}(x_0)U˚(x0)
如果在x→x0x \rightarrow x_0x→x0的过程中,对应的函数值f(x)f(x)f(x)无限接近于确定的数值AAA,那么就说AAA是函数f(x)f(x)f(x)当x→x0x \rightarrow x_0x→x0时的极限
定义1 \; 设函数f(x)f(x)f(x)在点x0x_0x0的某一去心邻域内有定义。如果存在常数AAA,对于任意给定的正数ε\varepsilonε(不论它多么小),总存在正数δ\deltaδ,使得当xxx满足不等式0<∣x−x0∣<δ0 < |x-x_0| < \delta0<∣x−x0∣<δ时,对应的函数值f(x)f(x)f(x)都满足不等式
∣f(x)−A∣<ε|f(x) - A| < \varepsilon∣f(x)−A∣<ε
那么常数AAA就叫做函数f(x)f(x)f(x)当x→x0x \rightarrow x_0x→x0时的极限,记作
limn→x0f(x)=A 或 f(x)→A(当x→x0)\lim\limits_{n \to x_0}f(x) = A \; 或 \; f(x) \rightarrow A(当 x \rightarrow x_0)n→x0limf(x)=A或f(x)→A(当x→x0)
定义中0<∣x−x0∣0 < |x-x_0|0<∣x−x0∣表示x≠x0x \neq x_0x=x0,所以x→x0x \rightarrow x_0x→x0时f(x)f(x)f(x)有没有极限,与f(x)f(x)f(x)在点x0x_0x0处是否有定义并无关系。
定义1可以简单地表述为
limn→x0f(x)=A⇔∀ε>0,∃δ>0,当0<∣x−x0∣<δ时,有∣f(x)−A∣<ε\lim\limits_{n \to x_0}f(x) = A \Leftrightarrow \forall \varepsilon > 0,\exists \delta > 0,当 0 < |x - x_0| < \delta 时,有|f(x) - A| < \varepsilonn→x0limf(x)=A⇔∀ε>0,∃δ>0,当0<∣x−x0∣<δ时,有∣f(x)−A∣<ε
函数f(x)f(x)f(x)当x→x0x \rightarrow x_0x→x0时的极限为A的几何解释如下:任意给定一正数ε\varepsilonε,作平行于xxx轴的两条直线y=A+εy = A + \varepsilony=A+ε 和 y=A−εy = A - \varepsilony=A−ε,介于这两条直线之间是一横条区域。根据定义,对于给定的ε\varepsilonε,存在着点x0x_0x0的一个δ\deltaδ领域(x0−δ,x0+δ)(x_0-\delta,x_0+\delta)(x0−δ,x0+δ),当y=f(x)y=f(x)y=f(x)的图形上的点的横坐标xxx在领域(x0−δ,x0+δ)(x_0-\delta,x_0+\delta)(x0−δ,x0+δ)内,但x≠x0x \neq x_0x=x0时,这些点的纵坐标f(x)f(x)f(x)满足不等式
∣f(x)−A<ε∣|f(x) - A < \varepsilon|∣f(x)−A<ε∣
或
A−ε<f(x)<A+εA-\varepsilon < f(x) < A + \varepsilonA−ε<f(x)<A+ε
亦即这些点落在上面所作的横条区域内,如下图:
有时只能或只需考虑xxx仅从x0x_0x0的左侧趋于x0x_0x0(记作x→x0x \rightarrow x_0x→x0)的情形,或xxx仅从x0x_0x0的右侧趋于x0x_0x0(记作x→x0x \rightarrow x_0x→x0)的情形。在x→x0x \rightarrow x_0x→x0的情形,xxx在x0x_0x0的左侧,x<x0x < x_0x<x0。在limn→x0f(x)=A\lim\limits_{n \to x_0}f(x) = An→x0limf(x)=A的定义中,把0<∣x−x0∣<δ0 < |x - x_0| < \delta0<∣x−x0∣<δ改为x0−δ<x<x0x_0 - \delta < x < x_0x0−δ<x<x0,那么AAA就叫做函数f(x)f(x)f(x)当x→x0x \rightarrow x_0x→x0时的左极限,记作
limn→x0−f(x)=A或f(x0−)=A\lim\limits_{n \to x_0^-}f(x) = A 或 f(x_0^-) = An→x0−limf(x)=A或f(x0−)=A
类似地,在limn→x0f(x)=A\lim\limits_{n \to x_0}f(x) = An→x0limf(x)=A的定义中,把0<∣x−x0∣<δ0 < |x - x_0| < \delta0<∣x−x0∣<δ改为x0<x<x0+δx_0 < x < x_0 + \deltax0<x<x0+δ,那么AAA就叫做函数f(x)f(x)f(x)当x→x0x \rightarrow x_0x→x0时的右极限,记作
limn→x0+f(x)=A或f(x0+)=A\lim\limits_{n \to x_0^+}f(x) = A 或 f(x_0^+) = An→x0+limf(x)=A或f(x0+)=A
左极限与右极限统称为单侧极限
根据x→x0x \rightarrow x_0x→x0时函数f(x)f(x)f(x)的极限的定义以及左极限和右极限的定义,容易证明:函数f(x)f(x)f(x)当x→x0x \rightarrow x_0x→x0时极限存在的充分必要条件是左极限及右极限各自存在并且相等,即
f(x0−)=f(x0+)f(x_0^-) = f(x_0^+)f(x0−)=f(x0+)
2.自变量趋于无限大时函数的极限
如果在x→∞x \rightarrow \inftyx→∞的过程中,对应的函数值f(x)f(x)f(x)无限接近于确定的数值AAA,那么就说AAA是函数f(x)f(x)f(x)当x→∞x \rightarrow \inftyx→∞时的极限
定义1 \; 设函数f(x)f(x)f(x)当∣x∣|x|∣x∣大于某一正数时有定义。如果存在常数AAA,对于任意给定的正数ε\varepsilonε(不论它多么小),总存在正数XXX,使得当xxx满足不等式∣x∣>X|x| > X∣x∣>X时,对应的函数值f(x)f(x)f(x)都满足不等式
∣f(x)−A∣<ε|f(x) - A| < \varepsilon∣f(x)−A∣<ε
那么常数AAA就叫做函数f(x)f(x)f(x)当x→∞x \rightarrow \inftyx→∞时的极限,记作
limn→∞f(x)=A 或 f(x)→A(当x→∞)\lim\limits_{n \to \infty}f(x) = A \; 或 \; f(x) \rightarrow A(当 x \rightarrow \infty)n→∞limf(x)=A或f(x)→A(当x→∞)
定义2可以简单地表述为
limn→∞f(x)=A⇔∀ε>0,∃X>0,当x→∞时,有∣f(x)−A∣<ε\lim\limits_{n \to \infty}f(x) = A \Leftrightarrow \forall \varepsilon > 0,\exists X > 0,当 x \rightarrow \infty 时,有|f(x) - A| < \varepsilonn→∞limf(x)=A⇔∀ε>0,∃X>0,当x→∞时,有∣f(x)−A∣<ε
从几何上来说,limn→∞f(x)=A\lim\limits_{n \to \infty}f(x) = An→∞limf(x)=A的意义是:作直线y=A−εy=A-\varepsilony=A−ε和y=A+εy=A+\varepsilony=A+ε,则总有一个正数X存在,使得当x<−Xx<-Xx<−X或x>Xx>Xx>X时,函数y=f(x)y=f(x)y=f(x)的图形位于这两直线之间,这时,直线y=Ay=Ay=A是函数y=f(x)y=f(x)y=f(x)的图形的水平渐近线,如下图:
二.函数极限的计算方法
函数极限的四则运算法则
设limx→x0f(x)=A,limx→x0g(x)=B\operatorname*{lim}_{x\to x_{0}}f(x)=A,\operatorname*{lim}_{x\to x_{0}}g(x)=Blimx→x0f(x)=A,limx→x0g(x)=B,则
- limx→x0[f(x)±g(x)]=A±B=limx→x0f(x)±limx→x0g(x)\begin{aligned}\lim\limits_{x\to x_0}\left[f(x)\pm g(x)\right]=A\text{}\pm B=\lim\limits_{x\to x_0}f(x)\pm\lim\limits_{x\to x_0}g(x)\end{aligned}x→x0lim[f(x)±g(x)]=A±B=x→x0limf(x)±x→x0limg(x)
- limx→x0[f(x)∗g(x)]=A∗B=limx→x0f(x)∗limx→x0g(x)\lim\limits_{x\to x_0}\left[f(x)*g(x)\right]=A*B=\lim\limits_{x\to x_0}f(x)*\lim\limits_{x\to x_0}g(x)x→x0lim[f(x)∗g(x)]=A∗B=x→x0limf(x)∗x→x0limg(x)
- limx→x0g(x)=AB=limx→x0f(x)limx→x0g(x)(B≠0)\lim\limits_{x\to x_0g(x)}=\dfrac{A}{B}=\dfrac{\lim\limits_{x\to x_0}f(x)}{\lim\limits_{x\to x_0}g(x)}(B\neq0)x→x0g(x)lim=BA=x→x0limg(x)x→x0limf(x)(B=0)
推论
若limx→x0f(x),limx→x0g(x)\operatorname*{lim}_{x\to x_{0}}f(x),\operatorname*{lim}_{x\to x_{0}}g(x)limx→x0f(x),limx→x0g(x)存在,则
- limx→x0[αf(x)+βg(x)]=αlimx→x0f(x)+βlimx→x0g(x)\lim\limits_{x\to x_0}\left[\alpha f(x)+\beta g(x)\right]=\alpha\underset{x\to x_0}{\text{lim}}f(x)+\beta\underset{x\to x_0}{\text{lim}}g(x)x→x0lim[αf(x)+βg(x)]=αx→x0limf(x)+βx→x0limg(x)
- limx→x0[f(x)]n=[limx→x0f(x)]n(n∈Z+)\lim\limits_{x\to x_0}\left[f(x)\right]^n=\left[\lim\limits_{x\to x_0}f(x)\right]^n\left(n\in\textbf{Z}^+\right)x→x0lim[f(x)]n=[x→x0limf(x)]n(n∈Z+)
- 若f(x)≥0,limx→x0f(x)=limx→x0f(x)若f(x)≥0,\operatorname*{lim}_{x\to x_{0}}\sqrt{f(x)}=\sqrt{\operatorname*{lim}_{x\to x_{0}}f(x)}若f(x)≥0,x→x0limf(x)=x→x0limf(x)
上述极限中,将“x→x0”改为“x→∞”,结论仍然成立.(证明过程有所差别)
注 (1)设Pn(x)=a0xn+a1xn−1+a2xn−2+…+anP_n(x)=a_0x^n+a_1x^{n-1}+a_2x^{n-2}+…+a_nPn(x)=a0xn+a1xn−1+a2xn−2+…+an,则
limx→x0Pn(x)=limx→x0(a0xn+a1xn−1+a2xn−2+⋯+an)=(a0limx→x0xn+a1limx→x0xn−1+a2limx→x0xn−2+⋯+anlimx→x01)=a0x0n+a1x0n−1+a2x0n−2+⋯+an=Pn(x0);\begin{aligned}\lim_{x\to x_0}P_n(x)&=\lim_{x\to x_0}\left(a_0x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots+a_n\right)\\ &=\left(a_0\lim_{x\to x_0}x^n+a_1\lim_{x\to x_0}x^{n-1}+a_2\lim_{x\to x_0}x^{n-2}+\cdots+a_n\lim_{x\to x_0}1\right)\\ &=a_0x_0^n+a_1x_0^{n-1}+a_2x_0^{n-2}+\cdots+a_n=P_n(x_0);\end{aligned}x→x0limPn(x)=x→x0lim(a0xn+a1xn−1+a2xn−2+⋯+an)=(a0x→x0limxn+a1x→x0limxn−1+a2x→x0limxn−2+⋯+anx→x0lim1)=a0x0n+a1x0n−1+a2x0n−2+⋯+an=Pn(x0);
(2)设f(x)=Pn(x)Qm(x)f(x)=\dfrac{P_{n}(x)}{Q_{m}(x)}f(x)=Qm(x)Pn(x),其中Pn(x)、Qm(x)P_n(x)、Q_m(x)Pn(x)、Qm(x)为多项式,Qm(x0)≠0Q_m(x0)≠0Qm(x0)=0,则
limx→x0f(x)=limx→x0Pn(x)limx→x0Qm(x)=Pn(x0)Qm(x0)=f(x0).\operatorname*{lim}_{x\to x_{0}}f(x)=\frac{\operatorname*{lim}_{x\to x_{0}}P_{n}(x)}{\operatorname*{lim}_{x\to x_{0}}Q_{m}(x)}=\frac{P_{n}(x_{0})}{Q_{m}(x_{0})}=f(x_{0}).x→x0limf(x)=limx→x0Qm(x)limx→x0Pn(x)=Qm(x0)Pn(x0)=f(x0).
复合函数的极限运算法则
设函数y=f[g(x)]y=f[g(x)]y=f[g(x)]是由函数u=g(x)u=g(x)u=g(x)与y=f(u)y=f(u)y=f(u)复合而成的,f[g(x)]f[g(x)]f[g(x)]在点x0x_0x0的去心邻域内有定义,若limx→x0g(x)=u0,limu→u0f(u)=A\operatorname*{lim}_{x\to x_{0}}g\left(x\right)=u_{0},\operatorname*{lim}_{u\to u_{0}}f(u)=Alimx→x0g(x)=u0,limu→u0f(u)=A,且存在δ0>0δ_0>0δ0>0,当x∈U∘(x0,δ0)x\in\overset{\circ}{U}(x_{0},\delta_{0})x∈U∘(x0,δ0)时,有g(x)≠u0g(x)≠u0g(x)=u0,则
limx→x0f[g(x)]=limu→u0f(u)=A.\lim\limits_{x\to x_0}f\big[g(x)\big]=\lim\limits_{u\to u_0}f(u)=A\text{.}x→x0limf[g(x)]=u→u0limf(u)=A.
三.函数极限的性质
定理1(函数极限的唯一性) \;如果limn→x0f(x)\lim\limits_{n \to x_0}f(x)n→x0limf(x)存在,那么这极限唯一
定理2(函数极限的局部有限性) \; 如果limn→x0f(x)=A\lim\limits_{n \to x_0}f(x) = An→x0limf(x)=A,那么存在常数M>0M>0M>0和δ>0\delta>0δ>0,使得当0<∣x−x0∣<δ0<|x-x_0|<\delta0<∣x−x0∣<δ时,有∣f(x)≤M∣|f(x) \leq M|∣f(x)≤M∣
定理3(函数极限的局部保号性) \; 如果limn→x0f(x)=A\lim\limits_{n \to x_0}f(x) = An→x0limf(x)=A,且A>0A > 0A>0(或A<0A < 0A<0),那么存在常数δ>0\delta>0δ>0,使得当0<∣x−x0∣<δ0<|x-x_0|<\delta0<∣x−x0∣<δ时,有f(x)>0f(x) > 0f(x)>0(或f(x)<0f(x) <0f(x)<0)
定理313^131 \; 如果limn→x0f(x)=A(A≠0)\lim\limits_{n \to x_0}f(x) = A(A \neq 0)n→x0limf(x)=A(A=0),那么就存在着x0x_0x0的某一去心邻域U˚(x0)\mathring{U}(x_0)U˚(x0),当x∈U˚(x0)x \in \mathring{U}(x_0)x∈U˚(x0)时,就有∣f(x)∣>∣a∣2|f(x)| > \frac{|a|}{2}∣f(x)∣>2∣a∣
由定理3,易得以下推论:
推论 \; 如果在x0x_0x0的某一去心邻域内f(x)≥0f(x) \geq 0f(x)≥0(或f(x)≤0f(x) \leq 0f(x)≤0),而且limn→x0f(x)=A\lim\limits_{n \to x_0}f(x) = An→x0limf(x)=A,那么A≥0A \geq 0A≥0(或A≤0A \leq 0A≤0)
定理4(函数极限与数列极限的关系) \; 如果极限limn→x0f(x)=A\lim\limits_{n \to x_0}f(x) = An→x0limf(x)=A存在,∣xn∣|x_n|∣xn∣为函数f(x)f(x)f(x)的定义域内任一收敛于x0x_0x0的数列,且满足:xn≠x0(n∈N+)x_n \neq x_0(n \in N_+)xn=x0(n∈N+),那么相应的函数值数列{f(xn)}\{f(x_n)\}{f(xn)}必收敛,且limn→∞f(xn)=limx→x0f(x)\lim\limits_{n \to \infty}f(x_n) = \lim\limits_{x \to x_0}f(x)n→∞limf(xn)=x→x0limf(x)