双塔模型-语义索引策略 [In-batch Negatives]

背景介绍

语义索引(可通俗理解为向量索引)技术是搜索引擎、推荐系统、广告系统在召回阶段的核心技术之一。语义索引模型的目标是:给定输入文本,模型可以从海量候选召回库中快速、准确地召回一批语义相关文本。语义索引模型的效果直接决定了语义相关的物料能否被成功召回进入系统参与上层排序,从基础层面影响整个系统的效果。

召回阶段,最常见的方式是通过双塔模型,学习Document(简写为Doc)的向量表示,对Doc端建立索引,用ANN召回。我们在这种方式的基础上,引入语义索引策略 [In-batch Negatives](https://arxiv.org/abs/2004.04906),以如下Batch size=4的训练数据为例:

我手机丢了,我想换个手机     我想买个新手机,求推荐
求秋色之空漫画全集          求秋色之空全集漫画
学日语软件手机上的          手机学日语的软件
侠盗飞车罪恶都市怎样改车     侠盗飞车罪恶都市怎么改车

In-batch Negatives 策略的训练数据为语义相似的 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医疗AI强化曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值