哪种量化方法更好:GPTQ vs. GGUF vs. AWQ[大模型量化]

那种量化方法更好:GPTQ vs. GGUF vs. AWQ

GPTQ

GPTQ是Post-Training Quantization for GPT Models的缩写,即GPT模型的后训练量化

GPTQ是一种针对4位量化后训练量化方法,主要侧重于GPU上提升推理性能

该方法的核心思想是通过将所有权重压缩到4位量化,通过最小化权重的均方误差来实现量化。在推理过程中,它会动态将权重反量化为float16,以提高性能同时保持低内存消耗

GPTQ是目前最常用的量化压缩方法。它主要针对GPU进行优化,如果大模型太大而无法加载到GPU中,那么我们首先考虑使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医疗AI强化曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值