大语言模型框架-Megatron-LM源码分析

大语言模型框架-Megatron-LM源码分析

原创 MLOps社区 DeepPrompting 2023年11月11日 11:44 北京

Megatron-LM是NVIDIA开源的大语言模型框架,是很多披露的大语言模型的训练使用的源头框架,很多公司基于其二次开发新的语言模型系统,例如Megatron-LM-DeepSpeed。

Megatron核心解决问题就是提供多种分布式切分并行策略,让大语言模型能够部署在多卡分布式环境下。本文将针对,张量并行,流水并行,数据并行的实现展开源码分析。MoE我们可以当成一种特殊的稀疏化结构,就不在本章进行介绍。

图片来自DeepSpeed(本文不介绍ZeRO,感兴趣读者可参考相关论文)

1 张量并行

张量并行分为行切和列切并行(指的是对输入矩阵切法),具体读者可以参考Megatron论文,其实现方式是继承实现Linear层,进而实现其中的并行策略,只需要替换模型中的Linear即可,后面我们也会看到MoE也是这种实现技巧。

图片

图来源Megatron-LM

图片

       world_size = get_tensor_model_parallel_world_size()
        self.input_size_per_partition = divide(input_size, world_size)通过这部分代码进行并行partition划分,worldsize是配置的tensorparallel的卡数,将完整input切成这么多份数,在每个执行这个代码的rank进行权重创建。

图片

如果输入不是并行切分好的,通过scatter去拿这部分权重对应的输入数据。

图片

scatter[图来源PyTorch官网]

图片

forward实现是配合异步allreduce进而将计算和comm通信并发执行。

图片

图片

    async_grad_allreduce (b

<think>我们先阅读用户的问题:用户想了解“AL大模型的知识体系和相关技术构成”,具体包括“知识体系、架构、技术组成、学习路径”。注意这里的“AL大模型”应该是“AI大模型”的笔误。接下来,我们参考提供的引用:-引用[1]:提到分享AI大模型资料,包括学习思维导图、书籍、视频等。-引用[2]:列出两篇论文,关于语言建模和深度学习泛化的研究。-引用[3]:详细描述AI大模型技术架构,将其比喻为摩天大楼,包含六大核心结构:GPU硬件、云原生调度、模型优化、RAG检索、智能应用落地。-引用[4]:提到人大的一篇论文,提出大模型自治代理的四模块框架。用户的需求集中在知识体系、架构、技术组成和学习路径。因此,我们将围绕这些方面构建回答。回答结构:1.知识体系概述:解释AI大模型涉及的核心领域。2.技术架构分层:参考引用[3]中的“摩天大楼”比喻,分层解析技术架构。3.技术组成详述:结合引用[3]和[4],详细说明每个层次的技术模块。4.学习路径建议:参考引用[1]的学习资料类型,提供循序渐进的学习建议。注意:用户上次的问题和回答历史未提供,但根据当前问题,我们直接针对问题回答。生成相关问题:根据问题内容,设计相关问题,如具体技术细节、工具等。最后,确保回答格式正确:使用中文,行内公式用$...$,独立公式用$$...$$(但这个问题可能没有数学公式),引用标记[^n]。</think> AI大模型知识体系涵盖从理论到应用的完整技术栈,核心架构可分为六层(参考“技术摩天大楼”比喻[^3]),以下是系统性拆解与技术组成: --- ### **一、知识体系架构分层** 1. **硬件基础层(地基)** - GPU并行计算架构(如NVIDIA Hopper) - 高速互联技术(InfiniBand/NVLink) - 云原生调度平台(Kubernetes + Slurm集群) 2. **基础设施层(承重结构)** - 分布式训练框架Megatron-LM/DeepSpeed) - 混合精度训练(FP16/FP8量化) - 数据流水线优化(Apache Arrow格式) 3. **模型核心层(主体结构)** - 主流架构:Transformer(自注意力机制) - 关键技术: - 位置编码(RoPE,旋转位置编码) - 归一化技术(RMSNorm) - 激活函数(Swish-GLU) - 参数量级:7B~540B(如Llama/GPT系列) 4. **优化层(精装修)** - 参数高效微调(PEFT):LoRA/QLoRA - 推理加速(vLLM/FlashAttention) - 持续训练技术(DPO/RLHF) 5. **认知增强层(智能管道)** - RAG检索增强(向量数据库+语义检索) - Agent框架(规划→记忆→工具调用→决策[^4]) - 多模态对齐(CLIP/ImageBind) 6. **应用层(功能空间)** - 代码生成(CodeLlama) - 多智能体协同(AutoGen) - 领域大模型(FinGPT/Med-PaLM--- ### **二、技术组成关键要素** | 维度 | 关键技术 | |--------------|--------------------------------------------------------------------------| | **算法原理** | Transformer架构、MoE混合专家、扩散模型(图像生成) | | **数据处理** | 数据清洗(Deduplication)、词元化(SentencePiece)、知识蒸馏 | | **训练范式** | 预训练(MLM任务)、指令微调(SFT)、人类偏好对齐(RLHF) | | **部署优化** | 模型剪枝、量化(GGML/AWQ)、服务框架(Triton推理服务器) | --- ### **三、学习路径建议(由浅入深)** 1. **基础阶段** - 掌握Python/PyTorch - 理解Transformer数学原理($Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V$) - 实践Hugging Face Transformers库(微调BERT) 2. **进阶层** - 分布式训练实战(DeepSpeed ZeRO配置) - 精读论文(如"Attention is All You Need"和引用[2]论文) - 调试开源模型(Llama2源码分析) 3. **专精方向** ```mermaid graph LR A[架构设计] --> B(参数高效微调) A --> C(推理优化) A --> D(Agent系统开发) D --> E[工具调用API] D --> F[记忆增强] ``` 4. **资源指引** - 思维导图:NLP知识图谱(涵盖BERT→GPT-4演进)[^1] - 课程:Stanford CS224N(LLM专题) - 实战:Kaggle LLM竞赛项目 --- **创新趋势**:2023年MoE模型(如Mixtral 8x7B)实现$ \text{推理成本} \propto \frac{1}{5} \times \text{参数量}$跃迁,工具增强Agent将成下一代焦点[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医疗AI强化曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值