转载自:http://blog.csdn.net/lizhitao/article/details/37811291

1.依赖jar包
2.producer程序
producer参数说明#指定kafka节点列表,用于获取metadata,不必全部指定
metadata.broker.list=192.168.2.105:9092,192.168.2.106:9092
# 指定分区处理类。默认kafka.producer.DefaultPartitioner,表通过key哈希到对应分区
#partitioner.class=kafka.producer.DefaultPartitioner
# 是否压缩,默认0表示不压缩,1表示用gzip压缩,2表示用snappy压缩。压缩后消息中会有头来指明消息压缩类型,故在消费者端消息解压是透明的无需指定。
compression.codec=none
# 指定序列化处理类(mafka client API调用说明-->3.序列化约定wiki),默认为kafka.serializer.DefaultEncoder,即byte[]
# serializer.class=kafka.serializer.DefaultEncoder
# serializer.class=kafka.serializer.StringEncoder
# 如果要压缩消息,这里指定哪些topic要压缩消息,默认empty,表示不压缩。
#compressed.topics=
########### request ack ###############
# producer接收消息ack的时机.默认为0.
# 0: producer不会等待broker发送ack
# 1: 当leader接收到消息之后发送ack
# 2: 当所有的follower都同步消息成功后发送ack.
request.required.acks=0
# 在向producer发送ack之前,broker允许等待的最大时间
# 如果超时,broker将会向producer发送一个error ACK.意味着上一次消息因为某种
# 原因未能成功(比如follower未能同步成功)
request.timeout.ms=10000
########## end #####################
# 同步还是异步发送消息,默认“sync”表同步,"async"表异步。异步可以提高发送吞吐量,
# 也意味着消息将会在本地buffer中,并适时批量发送,但是也可能导致丢失未发送过去的消息
producer.type=sync
############## 异步发送 (以下四个异步参数可选) ####################
# 在async模式下,当message被缓存的时间超过此值后,将会批量发送给broker,默认为5000ms,此值和batch.num.messages协同工作.
queue.buffering.max.ms = 5000
# 在async模式下,producer端允许buffer的最大消息量。无论如何,producer都无法尽快的将消息发送给broker,从而导致消息在producer端大量沉积。此时,如果消息的条数达到阀值,将会导致producer端阻塞或者消息被抛弃,默认为10000
queue.buffering.max.messages=20000
# 如果是异步,指定每次批量发送数据量,默认为200
batch.num.messages=500
# 当消息在producer端沉积的条数达到"queue.buffering.max.meesages"后 ,阻塞一定时间后,队列仍然没有enqueue(producer仍然没有发送出任何消息)
# 此时producer可以继续阻塞或者将消息抛弃,此timeout值用于控制"阻塞"的时间
# -1: 无阻塞超时限制,消息不会被抛弃
# 0:立即清空队列,消息被抛弃
queue.enqueue.timeout.ms=-1
################ end ###############
# 当producer接收到error ACK,或者没有接收到ACK时,允许消息重发的次数
# 因为broker并没有完整的机制来避免消息重复,所以当网络异常时(比如ACK丢失)
# 有可能导致broker接收到重复的消息,默认值为3.
message.send.max.retries=3
# producer刷新topic metada的时间间隔,producer需要知道partition leader的位置,以及当前topic的情况 。 因此producer需要一个机制来获取最新的metadata,当producer遇到特定错误时,将会立即刷新 。
# (比如topic失效,partition丢失,leader失效等),此外也可以通过此参数来配置额外的刷新机制,默认值600000
topic.metadata.refresh.interval.ms=60000
ProducerTest.javaimport java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
public class ProducerTest {
public static void main(String[] args) {
// TODO Auto-generated method stub
work();
}
public static void work() {
Properties props = new Properties();
// 指定要连接的 broker
// 可以指定多个,"localhost:9092,localhost:9093,localhost:9094",以防某个 broker 挂了
props.put("metadata.broker.list", "localhost:9092");
// serializer.class为消息的序列化类
props.put("serializer.class", "kafka.serializer.StringEncoder");
// 这个是可选的,指定你的消息将要发送到哪个分区,默认值是
props.put("partitioner.class", "kafka.producer.DefaultPartitioner");
// 指定是否需要 broker 反馈消息已经收到. ACK机制, 消息发送需要kafka服务端确认
props.put("request.required.acks", "1");
props.put("num.partitions", "4");
// 定义 ProducerConfig 对象
ProducerConfig config = new ProducerConfig(props);
// <Integer, String>, 这里Integer指的是Partition key 的类型. String 指的是消息的类型
Producer<String, String> producer = new Producer<String, String>(config);
// 一次发送一条消息
for (int i = 1; i <= 10; i++) {
String ip = "192.168.2." + i;
String msg = "this is a test message" + i;
// KeyedMessage 的构造方法的参数分别表示 Topic, Partition key, 消息
KeyedMessage<String, String> data = new KeyedMessage<String, String>("test", ip, msg);
// 发送消息
producer.send(data);
}
// 批量发送消息
List<KeyedMessage<String, String>> messages = new ArrayList<KeyedMessage<String, String>>();
for (int i = 11; i <= 20; i++) {
KeyedMessage<String, String> message = new KeyedMessage<String, String>("test", null,
"this is a test message " + i);
messages.add(message);
}
producer.send(messages);
// 关闭连接
producer.close();
}
}
3.consumer程序
consumer参数说明# zookeeper连接服务器地址。
# 配置例子:"127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002"
zookeeper.connect=localhost:2181
# zookeeper的session过期时间,默认5000ms,用于检测消费者是否挂掉,当消费者挂掉,其他消费者要等该指定时间才能检查到并且触发重新负载均衡
zookeeper.session.timeout.ms=5000
zookeeper.connection.timeout.ms=10000
#当consumer reblance时,重试失败时时间间隔。
zookeeper.sync.time.ms=2000
#指定消费组
group.id=xxx
# 当consumer消费一定量的消息之后,将会自动向zookeeper提交offset信息
# 注意offset信息并不是每消费一次消息就向zk提交一次,而是现在本地保存(内存),并定期提交,默认为true
auto.commit.enable=true
# 自动更新时间。默认60 * 1000
auto.commit.interval.ms=1000
# 当前consumer的标识,可以设定,也可以有系统生成,主要用来跟踪消息消费情况,便于观察
conusmer.id=xxx
# 消费者客户端编号,用于区分不同客户端,默认客户端程序自动产生
client.id=xxxx
# 最大取多少块缓存到消费者(默认10)
queued.max.message.chunks=50
# 当有新的consumer加入到group时,将会reblance,此后将会有partitions的消费端迁移到新的consumer上,如果一个consumer获得了某个partition的消费权限,那么它将会向zk注册
# "Partition Owner registry"节点信息,但是有可能此时旧的consumer尚没有释放此节点,
# 此值用于控制,注册节点的重试次数.
rebalance.max.retries=5
# 获取消息的最大尺寸,broker不会像consumer输出大于此值的消息chunk
# 每次feth将得到多条消息,此值为总大小,提升此值,将会消耗更多的consumer端内存
fetch.min.bytes=6553600
# 当消息的尺寸不足时,server阻塞的时间,如果超时,消息将立即发送给consumer
fetch.wait.max.ms=5000
socket.receive.buffer.bytes=655360
# 如果zookeeper没有offset值或offset值超出范围。那么就给个初始的offset。有smallest、largest、anything可选,分别表示给当前最小的offset、当前最大的offset、抛异常。默认largest
auto.offset.reset=smallest
# 指定序列化处理类(mafka client API调用说明-->3.序列化约定wiki),默认为kafka.serializer.DefaultDecoder,即byte[]
derializer.class=kafka.serializer.DefaultDecoder
ConsumerTest.javaimport java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
public class ConsumerTest extends Thread {
private final ConsumerConnector consumer;
private final String topic;
public static void main(String[] args) {
ConsumerTest consumerThread = new ConsumerTest("test");
consumerThread.start();
}
public ConsumerTest(String topic) {
consumer = kafka.consumer.Consumer.createJavaConsumerConnector(createConsumerConfig());
this.topic = topic;
}
private static ConsumerConfig createConsumerConfig() {
Properties props = new Properties();
// 设置zookeeper的链接地址
props.put("zookeeper.connect", "localhost:2181");
// 设置group id
props.put("group.id", "1");
// kafka的group消费记录是保存在zookeeper上的, 但这个信息在zookeeper上不是实时更新的, 需要有个间隔时间更新
props.put("auto.commit.interval.ms", "1000");
props.put("zookeeper.session.timeout.ms", "10000");
return new ConsumerConfig(props);
}
public void run() {
// 设置Topic=>Thread Num映射关系, 构建具体的流
Map<String, Integer> topickMap = new HashMap<String, Integer>();
topickMap.put(topic, 1);
Map<String, List<KafkaStream<byte[], byte[]>>> streamMap = consumer.createMessageStreams(topickMap);
KafkaStream<byte[], byte[]> stream = streamMap.get(topic).get(0);
ConsumerIterator<byte[], byte[]> it = stream.iterator();
System.out.println("*********Results********");
while (it.hasNext()) {
System.err.println("get data:" + new String(it.next().message()));
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
多线程并行消费topicimport kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ConsumerGroupExample {
private final ConsumerConnector consumer;
private final String topic;
private ExecutorService executor;
public ConsumerGroupExample(String a_zookeeper, String a_groupId, String a_topic) {
consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
createConsumerConfig(a_zookeeper, a_groupId));
this.topic = a_topic;
}
public void shutdown() {
if (consumer != null) consumer.shutdown();
if (executor != null) executor.shutdown();
}
public void run(int a_numThreads) {
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, new Integer(a_numThreads));
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic);
// 启动所有线程
executor = Executors.newFixedThreadPool(a_numThreads);
// 开始消费消息
int threadNumber = 0;
for (final KafkaStream stream : streams) {
executor.submit(new ConsumerTest(stream, threadNumber));
threadNumber++;
}
}
private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) {
Properties props = new Properties();
props.put("zookeeper.connect", a_zookeeper);
props.put("group.id", a_groupId);
props.put("zookeeper.session.timeout.ms", "60000");
props.put("zookeeper.sync.time.ms", "2000");
props.put("auto.commit.interval.ms", "1000");
return new ConsumerConfig(props);
}
public static void main(String[] args) {
String zooKeeper = "localhost";
String groupId = "1";
String topic = "test";
int threads = 2;
ConsumerGroupExample example = new ConsumerGroupExample(zooKeeper, groupId, topic);
example.run(threads);
try {
Thread.sleep(10000);
} catch (InterruptedException ie) {
}
example.shutdown();
}
}
class ConsumerTest implements Runnable {
private KafkaStream m_stream;
private int m_threadNumber;
public ConsumerTest(KafkaStream a_stream, int a_threadNumber) {
m_threadNumber = a_threadNumber;
m_stream = a_stream;
}
public void run() {
ConsumerIterator<byte[], byte[]> it = m_stream.iterator();
while (it.hasNext())
System.out.println("Thread " + m_threadNumber + ": " + new String(it.next().message()));
System.out.println("Shutting down Thread: " + m_threadNumber);
}
}
producer性能优化:异步化,消息批量发送。consumer性能优化:如果是高吞吐量数据,设置每次拿取消息(fetch.min.bytes)大些,拿取消息频繁(fetch.wait.max.ms)些(或时间间隔短些),如果是低延时要求,则设置时间时间间隔小,每次从kafka broker拿取消息尽量小些。