神经网络- 吴恩达Andrew Ng CNN卷积神经网络Face Recognition and Neural Style Transfer Week4 知识总结

这篇博客深入探讨了人脸识别技术,包括什么是人脸识别、一发学习、Siamese网络以及Triplet损失。同时,也介绍了神经风格迁移的核心概念,如内容成本函数和风格成本函数,以及在1D和3D模型中的推广应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. What is face recognition? - Face recognition

在这里插入图片描述

2. One-shot learning - Face recognition

在这里插入图片描述
在这里插入图片描述

3. Siamese network - Face recognition

在这里插入图片描述
在这里插入图片描述

4. Triplet loss - Face recognition

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

5. Face verification and binary classification - Face recognition

在这里插入图片描述
在这里插入图片描述

6. What is neural style transfer? - Neural Style Transfer

在这里插入图片描述

7. What are deep ConvNets learning? - Neural Style Transfer

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

8. Cost function - Neural Style Transfer

在这里插入图片描述
在这里插入图片描述

9. Content cost function - Neural Style Transfer

在这里插入图片描述

10. Style cost function - Neural Style Transfer

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

11. 1D and 3D generalizations of models - Convolutional Networks in 1D or 3D

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考

https://www.coursera.org/learn/convolutional-neural-networks/supplement/att5T/lectures-in-pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值