RNN 卷积神经网络- 吴恩达Andrew Ng 论文等资料汇总

该博客总结了吴恩达Andrew Ng的深度学习专项课程中关于RNN(循环神经网络)、NLP(自然语言处理)和Transformer的精髓内容。从基础的RNN模型到复杂的Transformer翻译算法,涵盖了序列模型、注意力机制和词嵌入等关键知识点,并引用了相关论文和资源,帮助读者深入理解这些技术在实际应用中的效果和影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总结

感谢 吴恩达Andrew Ng老师详细教授的RNN,NLP,正在流行的翻译算法Transformers。
课程地址:https://www.deeplearning.ai/program/deep-learning-specialization/
在这里插入图片描述
相关的课程总结:

  1. RNN神经网络- 吴恩达Andrew Ng 循环神经网络Recurrent Neural Networks Week1 知识总结
  2. RNN神经网络- 吴恩达Andrew Ng 循环神经网络 NLP Natural Language processing and word Embeddings Week2 知识总结
  3. RNN神经网络- 吴恩达Andrew Ng 循环神经网络 语音识别Sequence Models and the Attention Mechanism Week3 知识总结
  4. RNN神经网络- 吴恩达Andrew Ng 循环神经网络 NLP Transformers Week4 知识总结

在这里插入图片描述

论文即参考资料

W​eek 1:

W​eek 2:

W​eek 4:

参考

https://www.coursera.org/learn/nlp-sequence-models/supplement/Sul1k/references

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值