注意力机制 attention 注意力分数 动手学深度学习v2

本文探讨了注意力机制在深度学习中的应用,特别是在自然语言处理中的重要作用。介绍了注意力分数和打分函数的实现,以及如何通过masked_softmax()处理填充padding。通过实例代码展示了注意力机制的实现过程,帮助读者理解这一关键概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 注意力机制 attention

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 注意力机制 attention 代码实现

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3. 注意力分数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4. 注意力打分函数实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. Q&A

    1. masked_softmax() 把填充padding的值,求softmax的时候,padding位置的值都设置为0.

参考

https://www.bilibili.com/video/BV1264y1i7R1?p=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值