目录
5.优化方案2:使用rear_prev记录rear指向节点的前一个节点
%maxsize极为重要,没有的话会在某些特殊情况下判断出错
1.题目
设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。
循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。
你的实现应该支持如下操作:
MyCircularQueue(k)
: 构造器,设置队列长度为 k 。Front
: 从队首获取元素。如果队列为空,返回 -1 。Rear
: 获取队尾元素。如果队列为空,返回 -1 。enQueue(value)
: 向循环队列插入一个元素。如果成功插入则返回真。deQueue()
: 从循环队列中删除一个元素。如果成功删除则返回真。isEmpty()
: 检查循环队列是否为空。isFull()
: 检查循环队列是否已满。示例:
MyCircularQueue circularQueue = new MyCircularQueue(3); // 设置长度为 3 circularQueue.enQueue(1); // 返回 true circularQueue.enQueue(2); // 返回 true circularQueue.enQueue(3); // 返回 true circularQueue.enQueue(4); // 返回 false,队列已满 circularQueue.Rear(); // 返回 3 circularQueue.isFull(); // 返回 true circularQueue.deQueue(); // 返回 true circularQueue.enQueue(4); // 返回 true circularQueue.Rear(); // 返回 4提示:
- 所有的值都在 0 至 1000 的范围内;
- 操作数将在 1 至 1000 的范围内;
- 请不要使用内置的队列库。
2.分析
之前在L33.【LeetCode题解】循环队列(数组解法)文章中提到过数组的解法,链表解决的思想也在那篇文章中,本文写写链表的代码
3.单向链表未优化的代码
typedef struct listnode
{
struct listnode* next;
int val;
}node;
typedef struct
{
node* head;
node* front;
node* rear;
int k;
} MyCircularQueue;
MyCircularQueue* myCircularQueueCreate(int k)
{
MyCircularQueue* queue=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
queue->k=k;
node* cur=NULL;
//初始化(k+1)个节点
int count=k+1;
while(count--)
{
node* newnode=(node*)malloc(sizeof(node));
if (cur==NULL)
{
queue->head=cur=newnode;
}
else
{
cur->next=newnode;
cur=newnode;
}
}
cur->next=queue->head;
queue->front=queue->rear=queue->head;
return queue;
}
bool myCircularQueueIsFull(MyCircularQueue* obj);
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value)
{
if (myCircularQueueIsFull(obj))
return false;
obj->rear->val=value;
obj->rear=obj->rear->next;
return true;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj);
bool myCircularQueueDeQueue(MyCircularQueue* obj)
{
if (myCircularQueueIsEmpty(obj))
return false;
obj->front=obj->front->next;
return true;
}
int myCircularQueueFront(MyCircularQueue* obj)
{
if (myCircularQueueIsEmpty(obj))
return -1;
return obj->front->val;
}
int myCircularQueueRear(MyCircularQueue* obj)
{
if (myCircularQueueIsEmpty(obj))
return -1;
node* cur=obj->rear;
while(cur->next!=obj->rear)
{
cur=cur->next;
}
return cur->val;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj)
{
return obj->front==obj->rear;
}
bool myCircularQueueIsFull(MyCircularQueue* obj)
{
return obj->rear->next==obj->front;
}
void myCircularQueueFree(MyCircularQueue* obj)
{
int count=obj->k+1;
while(count--)
{
node* tmp=obj->head->next;
free(obj->head);
obj->head=tmp;
}
free(obj);
}
运行结果:
在L33.【LeetCode题解】循环队列(数组解法)文章中只讲了单向循环链表的解法,但此方法是有缺陷的,原因:找尾时间复杂度为,在上方代码的myCircularQueueRear函数中,rear指向尾节点的下一个节点,由于是单向链表,则需要采用循环来找尾节点
下面给出两种优化方案:
4.优化方案1:使用双向循环链表
知识回顾
复习双向循环链表:
代码
注:相比单向循环链表,改动的地方在listnode的成员变量、myCircularQueueCreate函数和myCircularQueueRear函数
typedef struct listnode
{
struct listnode* next;
struct listnode* prev;
int val;
}node;
typedef struct
{
node* head;
node* front;
node* rear;
int k;
} MyCircularQueue;
MyCircularQueue* myCircularQueueCreate(int k)
{
MyCircularQueue* queue=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
queue->head=queue->front=queue->rear=NULL;
queue->k=k;
int count=k+1;
node* cur=NULL;
while(count--)//创建k+1个节点
{
node* newnode=(node*)malloc(sizeof(node));
if (queue->head==NULL)
{
queue->head=cur=newnode;
queue->front=queue->rear=queue->head;
queue->head->next=queue->head->prev;
queue->head->prev=queue->head->next;
}
else
{
cur->next=newnode;
newnode->prev=cur;
newnode->next=queue->head;
queue->head->prev=newnode;
cur=cur->next;
}
}
return queue;
}
bool myCircularQueueIsFull(MyCircularQueue* obj);
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value)
{
if (myCircularQueueIsFull(obj))
return false;
obj->rear->val=value;
obj->rear=obj->rear->next;
return true;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj);
bool myCircularQueueDeQueue(MyCircularQueue* obj)
{
if (myCircularQueueIsEmpty(obj))
return false;
obj->front=obj->front->next;
return true;
}
int myCircularQueueFront(MyCircularQueue* obj)
{
if (myCircularQueueIsEmpty(obj))
return -1;
return obj->front->val;
}
int myCircularQueueRear(MyCircularQueue* obj)
{
if (myCircularQueueIsEmpty(obj))
return -1;
return obj->rear->prev->val;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj)
{
return obj->front==obj->rear;
}
bool myCircularQueueIsFull(MyCircularQueue* obj)
{
return obj->rear->next==obj->front;
}
void myCircularQueueFree(MyCircularQueue* obj)
{
int count=obj->k+1;
while(count--)
{
node* tmp=obj->head->next;
free(obj->head);
obj->head=tmp;
}
free(obj);
}
提交结果
5.优化方案2:使用rear_prev记录rear指向节点的前一个节点
注:相比单向循环链表,改动的地方在MyCircularQueue匿名结构体的成员变量、myCircularQueueCreate函数、myCircularQueueRear函数和myCircularQueueEnQueue函数
typedef struct listnode
{
struct listnode* next;
int val;
}node;
typedef struct
{
node* head;
node* front;
node* rear;
node* rear_prev;
int k;
} MyCircularQueue;
MyCircularQueue* myCircularQueueCreate(int k)
{
MyCircularQueue* queue=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
queue->k=k;
node* cur=NULL;
//初始化(k+1)个节点
int count=k+1;
while(count--)
{
node* newnode=(node*)malloc(sizeof(node));
if (cur==NULL)
{
queue->head=cur=newnode;
}
else
{
cur->next=newnode;
cur=newnode;
}
}
cur->next=queue->head;
queue->rear_prev=cur;//设置rear_prev在rear前
queue->front=queue->rear=queue->head;
return queue;
}
bool myCircularQueueIsFull(MyCircularQueue* obj);
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value)
{
if (myCircularQueueIsFull(obj))
return false;
obj->rear->val=value;
obj->rear=obj->rear->next;
obj->rear_prev=obj->rear_prev->next;
return true;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj);
bool myCircularQueueDeQueue(MyCircularQueue* obj)
{
if (myCircularQueueIsEmpty(obj))
return false;
obj->front=obj->front->next;
return true;
}
int myCircularQueueFront(MyCircularQueue* obj)
{
if (myCircularQueueIsEmpty(obj))
return -1;
return obj->front->val;
}
int myCircularQueueRear(MyCircularQueue* obj)
{
if (myCircularQueueIsEmpty(obj))
return -1;
return obj->rear_prev->val;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj)
{
return obj->front==obj->rear;
}
bool myCircularQueueIsFull(MyCircularQueue* obj)
{
return obj->rear->next==obj->front;
}
void myCircularQueueFree(MyCircularQueue* obj)
{
int count=obj->k+1;
while(count--)
{
node* tmp=obj->head->next;
free(obj->head);
obj->head=tmp;
}
free(obj);
}
提交结果
6.一道笔试题
分析
正确答案:B
读题发现是用数组实现的
发现四个选项都有%maxsize,解释maxsize:循环队列的总空间,例如当maxsize==5时,最多只能存4个元素,要留下一个空间来判断空和满
%maxsize极为重要,没有的话会在某些特殊情况下判断出错
k==4时,maxsize==5,
1.画出初始状态:
2.入队4个元素后:
3.出队一个,再入队一个:
4.出队一个,再入队一个:
第1步:ring.front==0,ring.end==0
第2步:ring.front==0,ring.end==4
第3步:ring.front==1,ring.end==0
第4步:ring.front==2,ring.end==1
经验证:(ring.end+1)%maxsize == ring.front是正确的,如果为ring.end+1 == ring.front,则在第1、2步时会出问题(注意:第1~4步包含了front和end所有可能的取值,考虑特殊情况:都为0或者其中一个为0)