CC53.【C++ Cont】一维前缀和

目录

1.定义

2.作用

3.例题:【模板】一维前缀和

分析

方法1:暴力解法

方法2:前缀和(简单的动态规划)

第一步:预处理

4.练习:P1115 最大子段和

分析

方法1:段长从1枚举到n

方法2:改进方法1

代码

 提交结果


1.定义

快速求出数组中某一段的区间和,时间复杂度为O(1)(速度极快)

2.作用

可在暴力枚举的过程中快速给出查询的结果,用空间替换时间,从而优化时间复杂度

3.例题:【模板】一维前缀和

https://ac.nowcoder.com/acm/problem/226282

分析

注意到数组从下标为1位置开始计数,原因见之后的算法推导

方法1:暴力解法

直接的想法:先用arr[]存读到的数,读到l和r时就按部就班地计算arr[l]+arr[l+1]+...+arr[r]

注意使用long long存储求和的结果,用int可能会溢出

#include <iostream>
#define endl "\n"
using namespace std;
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);

	int n,q,l,r;
	const long long N=1e5+10; 
	long long arr[N];
	cin>>n>>q;
	for (int i=1;i<=n;i++)
		cin>>arr[i];
	while(q--)
	{
		long long sum=0;
		cin>>l>>r;
		for (int j=l;j<=r;j++)
			sum+=arr[j];
		cout<<sum<<endl;	
	} 
}

运行结果:运行超时

反思:时间复杂度按最差情况算,如果每次都要计算arr[1]~arr[n]的和,时间复杂度为O(q\cdot N)(q为询问次数

方法2:前缀和(简单的动态规划)

第一步:预处理

预处理一个数组dp[](叫dp的原因是动态规划的英文为dynamic programming,取首字母),其中元素dp[i]表示arr[1]+...+arr[i]的求和结果(即闭区间[1,i]中所有元素的和)

使用递推公式dp[i]=dp[i-1]+dp[i]来快速预处理,时间复杂度为O(N),而若每次计算f[i]都有反复计算arr[1]+...+arr[i],时间复杂度为O(N^2)

★则arr[l]+...+arr[r]等于dp[r]-dp[l-1]

设计代码时,在读arr[i]时就可以预处理前缀和数组

即如果用S_nb表示数组的前n项和,其中S_1=a_1,那么有S_n-S_{n-1}=a_n(n>=2)(这个就是状态转移方程,等价表示为dp[i]=dp[i-1]+arr[i]),可以使用数组dp[N]来存储所有的S_i(1<=i<=n)

#include <iostream>
#define endl "\n"
using namespace std;
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);

	int n,q,l,r;
	const long long N=1e5+10; 
	long long arr[N];
	long long dp[N];
	cin>>n>>q;
	cin>>arr[1];//注意从下标为1开始计数
	dp[1]=arr[1];
	for (int i=2;i<=n;i++)
	{
        //一边读arr[i],一边写入dp数组
		cin>>arr[i];
		dp[i]=dp[i-1]+arr[i];
	}
	while(q--)
	{
		cin>>l>>r;
		cout<<dp[r]-dp[l-1]<<endl;	
	} 
}

(注意从下标从1开始计数,这样好处理,从0开始容易越界访问,例如[0,2]区间的元素的和:dp[2]-dp[-1],-1越界了,设置dp[0]=0,不干扰计算结果) 

若i从1开始循环,前缀和计算代码也可以这样写:

	dp[0]=0;
    cin>>n;
	for (int i=1;i<=n;i++)
	{
		cin>>arr[i];
        //i==1时,dp[i-1]==dp[0]
		dp[i]=dp[i-1]+arr[i];
	}

运行结果:

4.练习:P1115 最大子段和

https://www.luogu.com.cn/problem/P1115

分析

读题可知:"使得这段和最大"应该使用前缀和算法

方法1:段长从1枚举到n

#include <iostream>
#include <climits>
#define endl "\n"
using namespace std;
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);

	int n;
	const long long N=2e5+10; 
	long long arr[N];
	long long dp[N];
	long long max=LLONG_MIN; 
	cin>>n;
	cin>>arr[1];
	dp[1]=arr[1];
	for (int i=2;i<=n;i++)
	{
		cin>>arr[i];
		dp[i]=dp[i-1]+arr[i];
	}
	for (int len=1;len<=n;len++)//段长从1枚举到n
	{
		for (int index=1;index+len-1<=n;index++)
		{
			long long sub=dp[index+len-1]-dp[index-1];
			if (sub>max)
				max=sub;
		}
	} 
	cout<<max;
}

注:long long的最小值的宏为LLONG_MIN,定义在头文件<climits>中

运行结果:超时,算法需要改进,两层for循环时间复杂度过高

方法2:改进方法1

算法:

设数组arr存储读入的n个元素,求以元素arr[i]为结尾的最大子段和,可以画图演示计算方法

则以元素arr[i]为结尾的子段和为dp[i]-dp[x],如果要求子段和最大,那么有:

(dp[i]-dp[x])_{max}=dp[i]-dp[x]_{min}

(注:设i为常数)

定义(dp[i]-dp[x])_{max}为ret,dp[x]_{min}为prevmin,显然,求最大使用max函数,求最小使用min函数

暂时写为:

ret=max(?,ret);
prevmin=min(?,prevmin);

填补?处:

(dp[i]-dp[x])_{max}=dp[i]-dp[x]_{min}=dp[i]-prevmin

由于i从1开始因此一开始ret==max(dp[1]-prevmin,ret)==dp[1],那么prevmin的初始值为0(max(dp[1]-prevmin,ret)为max(dp[1],ret)),则可以写出:

ret=max(dp[i]-prevmin,ret);
prevmin=min(dp[i],prevmin);

代码

#include <iostream>
#include <algorithm>
#define endl "\n"
using namespace std;
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);

	int n,tmp;
	long long dp[200005];
	long long prevmin=0,ret=-1e5-10;//ret初始化为负无穷大 
	cin>>n;
	dp[0]=0;
	for (int i=1;i<=n;i++)
	{
		cin>>tmp;
		dp[i]=dp[i-1]+tmp;//arr数组可以省略,下面没有用到 
	}
	
	for (int i=1;i<=n;i++) 
	{
		ret=max(dp[i]-prevmin,ret);
		prevmin=min(prevmin,dp[i]);
	}
	cout<<ret;
}

 提交结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangcoder

赠人玫瑰手有余香,感谢支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值