L38.【LeetCode题解】盛最多水的容器 (双指针思想)

目录

1.题目

2.分析

方法1:暴力双指针

提交结果

方法2:优化双指针法

选一段小区间研究规律

得出以下优化结论

代码

提交结果


1.题目

https://leetcode.cn/problems/container-with-most-water/description/

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

示例 1:

输入:[1,8,6,2,5,4,8,3,7]
输出:49 
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例 2:

输入:height = [1,1]
输出:1

提示:

  • n == height.length
  • 2 <= n <= 10^5
  • 0 <= height[i] <= 10^4

2.分析

方法1:暴力双指针

直接枚举所有线段的组合,找出最大的,显然需要两个循环(设循环变量为i和j),由木桶效应(也称短板效应)可知:容器容纳水的体积与height[i],height[j]最小的那个有关,即决定容器的高,可得出以下容器体积公式:

V=min(height[i],height[j])*(j-i)

class Solution {
public:
    int maxArea(vector<int>& height) 
    {
        int max=0;
        for (int i=0;i<height.size();i++)
        {
            for (int j=i+1;j<height.size();j++)
            {
                int V=min(height[i],height[j])*(j-i);
                if (V>max)
                {
                    max=V;
                }
            }
        }
        return max;   
    }
};

提交结果

两个循环时间复杂度为O(N^2),由大量数据要处理时会超时

方法2:优化双指针法

优化双指针法本质上是去简化两个for循环

选一段小区间研究规律

例如小区间[6,20,1,4],换一种枚举的方式:设左右指针left==0,right==3

初始状态:

计算V=h*w=min(height[left],height[right])*(right-left),h为高度,w为宽度,如果能观察出V的变化规律,则能简化最大体积的求解方式

发现:V的变化规律由两个变量决定:高度h和宽度w

当left==0,right==3时,

1.如果固定right不变,让left向右移动,体积一定是减小的,不需要继续枚举下去(原因:height[left]>height[right])

证明:left向右移动,宽度w一定是减小的,高度可能变小也有可能不变

高度变小:

高度不变:

2.如果固定left不变,让right向左移动,体积有可能变大的,值得枚举下去(原因:height[left]>height[right])

得出以下优化结论

算出体积V后,找到height[left]和height[right]中最小的那个,如果是height[left],让left++;如果是height[right],让right--,从而加快枚举速度

代码

class Solution {
public:
    int maxArea(vector<int>& height) 
    {
        int Vmax=0;
        int left=0;
        int right=height.size()-1;
        while(left<right)
        {
            Vmax=max(Vmax,min(height[left],height[right])*(right-left));
            if (height[left]>height[right])
                right--;
            else
                left++;
        }
        return Vmax;   
    }
};

提交结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangcoder

赠人玫瑰手有余香,感谢支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值