目录
1.题目
给定一个长度为
n
的整数数组height
。有n
条垂线,第i
条线的两个端点是(i, 0)
和(i, height[i])
。找出其中的两条线,使得它们与
x
轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7] 输出:49 解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。示例 2:
输入:height = [1,1] 输出:1提示:
n == height.length
2 <= n <= 10^5
0 <= height[i] <= 10^4
2.分析
方法1:暴力双指针
直接枚举所有线段的组合,找出最大的,显然需要两个循环(设循环变量为i和j),由木桶效应(也称短板效应)可知:容器容纳水的体积与height[i],height[j]最小的那个有关,即决定容器的高,可得出以下容器体积公式:
class Solution {
public:
int maxArea(vector<int>& height)
{
int max=0;
for (int i=0;i<height.size();i++)
{
for (int j=i+1;j<height.size();j++)
{
int V=min(height[i],height[j])*(j-i);
if (V>max)
{
max=V;
}
}
}
return max;
}
};
提交结果
两个循环时间复杂度为,由大量数据要处理时会超时
方法2:优化双指针法
优化双指针法本质上是去简化两个for循环
选一段小区间研究规律
例如小区间[6,20,1,4],换一种枚举的方式:设左右指针left==0,right==3
初始状态:
计算,h为高度,w为宽度,如果能观察出V的变化规律,则能简化最大体积的求解方式
发现:V的变化规律由两个变量决定:高度h和宽度w
当left==0,right==3时,
1.如果固定right不变,让left向右移动,体积一定是减小的,不需要继续枚举下去(原因:height[left]>height[right])
证明:left向右移动,宽度w一定是减小的,高度可能变小也有可能不变
高度变小:
高度不变:
2.如果固定left不变,让right向左移动,体积有可能变大的,值得枚举下去(原因:height[left]>height[right])
得出以下优化结论
算出体积V后,找到height[left]和height[right]中最小的那个,如果是height[left],让left++;如果是height[right],让right--,从而加快枚举速度
代码
class Solution {
public:
int maxArea(vector<int>& height)
{
int Vmax=0;
int left=0;
int right=height.size()-1;
while(left<right)
{
Vmax=max(Vmax,min(height[left],height[right])*(right-left));
if (height[left]>height[right])
right--;
else
left++;
}
return Vmax;
}
};