最小生成树(Prim算法,Kruskal算法 c++)

  • 在一个连通图的所有生成树中,各边的代价和最小的那棵生成树称为该连通图的最小代价生成树,即最小生成树
  • 有普利姆(Prim)算法和克鲁斯卡尔(Kruskal)算法
  • Prim算法更适合求稠密图的最小生成树【稠密图的无向网更适合使用邻接矩阵形式存储】
  • Kruskal算法更适合求稀疏图的最小生成树【稀疏图的无向网更适合使用邻接表形式存储】

输入:
8 14
a b c d e f g h
a b 4 a c 3 b c 5 b d 5 c d 5
b e 9 c h 5 d h 4 d e 7 d f 6
d g 5 e f 3 f g 2 g h 6
最小生成树输出:ac ab cd dh dg gf fe

Prim算法(“加点法”)

Prim算法更适合求稠密图的最小生成树【稠密图的无向网更适合使用邻接矩阵形式存储】

#include<iostream>
using namespace std;

#define MaxInt 32767  //表示极大值,用于初始化无向网 
#define MAXNUM  100

char visited1[MAXNUM];

typedef struct{
	char vexs[MAXNUM];  //顶点 
	int arcs[MAXNUM][MAXNUM];//边 
	int vexnum,arcnum;
}AMGraph; //邻接矩阵的数据类型 

struct{
	char adjvex;//最小边上的已选择顶点 
	int lowcost;//最小边上的权值 
}closedge[MAXNUM];//辅助数组 


int LocateVex(AMG
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值