- 在一个连通图的所有生成树中,各边的代价和最小的那棵生成树称为该连通图的最小代价生成树,即最小生成树
- 有普利姆(Prim)算法和克鲁斯卡尔(Kruskal)算法
- Prim算法更适合求稠密图的最小生成树【稠密图的无向网更适合使用邻接矩阵形式存储】
- Kruskal算法更适合求稀疏图的最小生成树【稀疏图的无向网更适合使用邻接表形式存储】
输入:
8 14
a b c d e f g h
a b 4 a c 3 b c 5 b d 5 c d 5
b e 9 c h 5 d h 4 d e 7 d f 6
d g 5 e f 3 f g 2 g h 6
最小生成树输出:ac ab cd dh dg gf fe
Prim算法(“加点法”)
Prim算法更适合求稠密图的最小生成树【稠密图的无向网更适合使用邻接矩阵形式存储】
#include<iostream>
using namespace std;
#define MaxInt 32767 //表示极大值,用于初始化无向网
#define MAXNUM 100
char visited1[MAXNUM];
typedef struct{
char vexs[MAXNUM]; //顶点
int arcs[MAXNUM][MAXNUM];//边
int vexnum,arcnum;
}AMGraph; //邻接矩阵的数据类型
struct{
char adjvex;//最小边上的已选择顶点
int lowcost;//最小边上的权值
}closedge[MAXNUM];//辅助数组
int LocateVex(AMG