HJ76 尼科彻斯定理

描述

验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。

例如:

1^3=1

2^3=3+5

3^3=7+9+11

4^3=13+15+17+19

输入一个正整数m(m≤100),将m的立方写成m个连续奇数之和的形式输出。

#include<iostream>
#include<math.h>
using namespace std;

int main()
{
	int m;
	while (cin >> m)
	{
		int sum = pow(m, 3);
		int a = (sum * 2 / m + 2 - 2 * m) / 2;//等差数列:sum=(上底+下底)*h/2;公差是2;sum=(a+a+2*(m-1))*m/2
		for (int i = 0; i < m; i++)
		{
			cout << a + i * 2;
			if (i != m - 1)
				cout << "+";
		}
		cout <<endl;
	}
	
	
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉浮一湘蕉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值