目录
优势与挑战
神经网络和算力共享结合
技术实现
- 算力资源动态调度算法:设计一种基于任务需求、资源状态及成本效益的算力资源动态调度算法,确保神经网络训练与推理过程中的资源高效利用。
- 分布式训练框架:构建支持多节点、多GPU的分布式训练框架,利用算力共享平台实现模型参数的同步更新,加速训练过程。
- 模型压缩与加速技术:结合剪枝、量化等模型压缩技术,以及低精度计算、知识蒸馏等方法,进一步降低模型对算力的需求,提升推理速度。
创新点
- 算力资源智能分配机制:提出一种基于深度学习的算力资源智能分配机