神经网络和算力共享结合:基于深度学习的算力资源智能分配机制;一种支持跨云、跨边缘计算平台的协同训练框架;模型自适应优化策略

1786 篇文章 ¥199.90 ¥299.90
835 篇文章 ¥199.90 ¥299.90
54 篇文章

目录

神经网络和算力共享结合

技术实现

创新点

实验验证

基于深度学习的算力资源智能分配机制

一、机制概述

二、关键技术

三、应用场景

四、优势与挑战

优势

挑战

一种支持跨云、跨边缘计算平台的协同训练框架(联邦学习)

一、框架概述

二、关键技术点

三、实现步骤

四、案例参考

Mocha联邦多任务学习框架是什么

框架概述

关键技术

应用场景

优势与挑战​​​​​​​

模型自适应优化策略

1. 监控算力资源

2. 评估模型需求

3. 动态调整模型结构

4. 调整训练参数

5. 引入自适应算法

6. 持续优化与反馈


神经网络和算力共享结合

技术实现

  1. 算力资源动态调度算法:设计一种基于任务需求、资源状态及成本效益的算力资源动态调度算法,确保神经网络训练与推理过程中的资源高效利用。
  2. 分布式训练框架:构建支持多节点、多GPU的分布式训练框架,利用算力共享平台实现模型参数的同步更新,加速训练过程。
  3. 模型压缩与加速技术:结合剪枝、量化等模型压缩技术,以及低精度计算、知识蒸馏等方法,进一步降低模型对算力的需求,提升推理速度。

创新点

  1. 算力资源智能分配机制:提出一种基于深度学习的算力资源智能分配机
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值