怎么计算LLM所需内存; 32B:512GB(32精度); 32B lore微调代码

1899 篇文章 ¥199.90 ¥299.90
1487 篇文章 ¥199.90 ¥299.90
1298 篇文章 ¥199.90 ¥299.90

怎么计算LLM所需内存; 32B:512GB(32精度)

在AI模型领域,“32B” 代表模型参数量为320亿(32×10⁹ ) ,“32b” 一般指32比特(bit)的参数精度,即单精度浮点数(FP32)。以下从理论和实际情况说明其显存需求:

理论显存占用计算

对于32位单精度浮点数(FP32) ,每个参数占用4字节(Byte) 。根据显存需求 = 参数量 × 每个参数占用字节数的公式:

  • 32B参数量的模型,理论上仅存储模型参数所需显存为 320亿×4字节 = 1280亿字节 。
  • 由于1GB = 1024×1024×1024字节≈10亿字节,所以1280亿字节≈128GB ,即32B参数量的FP32模型,仅模型参数存储就需约128GB显存

实际训练所需显存:参数量的4倍

实际训练中,除模型参数本身占用显存外,还需存储梯度、优化器状态等,且不同优化器等因素会使显存需求变化:

  • 基于经验倍数估算:考虑反向传播、Adam优化器和Transformer架构等因素,保守估计训练所需显存是模型参数所占显存的4倍 。即128GB×4 = 512GB 。使用AdamW优化器时,显存需求约为模型参数显存占用的2倍,即128GB×2 = 256GB;使用SGD优化器时,显存需求约为模型参数显存占用的1倍,即128GB 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值