怎么计算LLM所需内存; 32B:512GB(32精度)
在AI模型领域,“32B” 代表模型参数量为320亿(32×10⁹ ) ,“32b” 一般指32比特(bit)的参数精度,即单精度浮点数(FP32)。以下从理论和实际情况说明其显存需求:
理论显存占用计算
对于32位单精度浮点数(FP32) ,每个参数占用4字节(Byte) 。根据显存需求 = 参数量 × 每个参数占用字节数的公式:
- 32B参数量的模型,理论上仅存储模型参数所需显存为 320亿×4字节 = 1280亿字节 。
- 由于1GB = 1024×1024×1024字节≈10亿字节,所以1280亿字节≈128GB ,即32B参数量的FP32模型,仅模型参数存储就需约128GB显存 。
实际训练所需显存:参数量的4倍
实际训练中,除模型参数本身占用显存外,还需存储梯度、优化器状态等,且不同优化器等因素会使显存需求变化:
- 基于经验倍数估算:考虑反向传播、Adam优化器和Transformer架构等因素,保守估计训练所需显存是模型参数所占显存的4倍 。即128GB×4 = 512GB 。使用AdamW优化器时,显存需求约为模型参数显存占用的2倍,即128GB×2 = 256GB;使用SGD优化器时,显存需求约为模型参数显存占用的1倍,即128GB 。