`torch.no_grad()`的实际含义:后续运算 不记录 梯度信息

1886 篇文章 ¥199.90 ¥299.90
1474 篇文章 ¥199.90 ¥299.90
1285 篇文章 ¥199.90 ¥299.90

torch.no_grad()的实际含义:后续运算 不记录 梯度信息

torch.no_grad() 是PyTorch中的一个上下文管理器,作用是禁用梯度计算

原理

在PyTorch中,自动求导机制(autograd)通过构建计算图来记录张量的运算过程,以便反向传播时计算梯度torch.no_grad() 进入其管理的代码块后,会自动将所有计算得出的张量的 requires_grad 属性设为 False** ,阻止计算图的构建,即后续运算不记录 梯度信息**。

应用场景

  • 模型推理阶段:模型训练好后进行推理(预测 )时,只需前向传播得到输出结果,无需反向传播计算梯度更新参数。如使用训练好的图像分类模型对新图片分类,用 torch.no_grad() 包裹推理代码,可避免计算和存储不必要的梯度,减少内存占用、加快推理速度。像对大量图片批量预测场景,能显著提升效率。
  • 模型评估阶段:在评估模型性能(如计算验证集或测试集的准确率、损失等指标 )时,不涉及参数更新,不需要梯度。例如计算语言模型在测试集上的困惑度,使用 torc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值