torch.no_grad()
的实际含义:后续运算 不记录 梯度信息
torch.no_grad()
是PyTorch中的一个上下文管理器,作用是禁用梯度计算 。
原理
在PyTorch中,自动求导机制(autograd
)通过构建计算图来记录张量的运算过程,以便反向传播时计算梯度。torch.no_grad()
进入其管理的代码块后,会自动将所有计算得出的张量的 requires_grad
属性设为 False**
,阻止计算图的构建,即后续运算不记录 梯度信息**。
应用场景
- 模型推理阶段:模型训练好后进行推理(预测 )时,只需前向传播得到输出结果,无需反向传播计算梯度更新参数。如使用训练好的图像分类模型对新图片分类,用
torch.no_grad()
包裹推理代码,可避免计算和存储不必要的梯度,减少内存占用、加快推理速度。像对大量图片批量预测场景,能显著提升效率。 - 模型评估阶段:在评估模型性能(如计算验证集或测试集的准确率、损失等指标 )时,不涉及参数更新,不需要梯度。例如计算语言模型在测试集上的困惑度,使用
torc