LLM探针技术揭秘情感敏感层

1949 篇文章 ¥199.90 ¥299.90
1536 篇文章 ¥199.90 ¥299.90
1348 篇文章 ¥199.90 ¥299.90

怎么查看LLM内部重点部分

LLM 对比探针技术

这段代码是一个基于Qwen2-3.5B-Instruct大语言模型的情感词敏感性分析脚本。它通过对比原始文本与扰动文本在模型各层的隐藏状态差异,找出对情感词最敏感的Transformer层。

import os
import torch
import matplotlib.pyplot as plt
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig

# --------------------------
# 1. 环境配置与模型加载
# --------------------------
# 设置GPU(指定使用编号为2、3、4的GPU)
os.environ["CUDA_VISIBLE_DEVICES"] = "2,3,4"

# 本地模型路径(Qwen2-3.5B-Instruct)
model_name = "/home/ZJQ/.cache/modelscope/hub/models/Qwen/Qwen2___5-14B-Instruct"

# 加载分词器(信任远程代码,Qwen系列需要)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# 加载模型配置
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
# 加载模型(自动分配到可用GPU)
model = AutoM
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值