LLM 中MLP 的长度和词嵌入向量维度一般关系

1884 篇文章 ¥199.90 ¥299.90
1472 篇文章 ¥199.90 ¥299.90
1283 篇文章 ¥199.90 ¥299.90

LLM 中MLP 的长度和词嵌入向量维度一般关系

4 c
在这里插入图片描述

在Qwen2等现代LLM的MLP模块中,gate_projup_projout_features=18944in_features=3584 不能整除(18944 ÷ 3584 ≈ 5.2857),这看似“不规整”,但本质是**模型设计中“实验驱动优化”优先于“数学规整性”**的结果。

1. 传统设计与现代设计的区别:从“规则倍数”到“灵活适配”

早期Transformer(如BERT、GPT-2)的MLP中间维度通常是 hidden_size整数倍最常见为4倍),例如:

  • BERT-base:hidden_size=768,MLP中间维度=3072(768×4);
  • GPT-2(1.5B):hidden_size=1600,MLP中间维度=6400(1600×4)。

这种设计的初衷是简化工程实现(整数倍便于并行计算)和经验性选

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值