揭秘CLIP:跨模态AI的视觉语言革命

1898 篇文章 ¥199.90 ¥299.90
1486 篇文章 ¥199.90 ¥299.90
1297 篇文章 ¥199.90 ¥299.90

CLIP模型是什么

CLIP(Contrastive Language-Image Pre-training,对比语言-图像预训练)是OpenAI在2021年提出的多模态基础模型,核心目标是打破“语言”与“图像”的模态壁垒,让模型同时理解视觉信息和文本信息,并建立两者之间的关联。它不依赖人工标注的“图像-类别”标签,而是通过大规模无标注的“图像-文本对”数据学习,具备极强的泛化能力。

一、CLIP的核心原理:“对比学习”+“跨模态对齐”

CLIP的核心逻辑可以拆解为3步,本质是让模型学会“图像内容”与“描述文字”的匹配关系:

  1. 双编码器架构
    模型包含两个独立的编码器,分别处理两种模态:

    • 图像编码器:早期用ResNet、后期用Vision Transformer(ViT),负责将输入图像转化为固定维度的“视觉特征向量”(比如维度为512)。
    • 文本编码器:用Transformer架构,负责将输入文本(比如“一只坐在沙发上的猫”)转化为同样维度的“文本特征向量”(确保与视觉向量可对比)。
  2. 对比学习训练
    训练时,给模型输入一批(比如32个)“图像-文本对”(称为一个批次),模型会:

    • 对每个图像生成视觉向量,每个文本生成文本向量;
    • 计算“所有图像向量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值