CLIP模型是什么
CLIP(Contrastive Language-Image Pre-training,对比语言-图像预训练)是OpenAI在2021年提出的多模态基础模型,核心目标是打破“语言”与“图像”的模态壁垒,让模型同时理解视觉信息和文本信息,并建立两者之间的关联。它不依赖人工标注的“图像-类别”标签,而是通过大规模无标注的“图像-文本对”数据学习,具备极强的泛化能力。
一、CLIP的核心原理:“对比学习”+“跨模态对齐”
CLIP的核心逻辑可以拆解为3步,本质是让模型学会“图像内容”与“描述文字”的匹配关系:
-
双编码器架构:
模型包含两个独立的编码器,分别处理两种模态:- 图像编码器:早期用ResNet、后期用Vision Transformer(ViT),负责将输入图像转化为固定维度的“视觉特征向量”(比如维度为512)。
- 文本编码器:用Transformer架构,负责将输入文本(比如“一只坐在沙发上的猫”)转化为同样维度的“文本特征向量”(确保与视觉向量可对比)。
-
对比学习训练:
训练时,给模型输入一批(比如32个)“图像-文本对”(称为一个批次),模型会:- 对每个图像生成视觉向量,每个文本生成文本向量;
- 计算“所有图像向量