训练具备记忆能力的LLM(大语言模型)时,输入、输出和标签的设计需围绕“对话历史+当前查询”与“关联历史的回复”展开,
核心是让模型学习“如何基于过去的对话信息生成连贯回复
一、输入(Input):包含记忆信息的对话上下文
输入是多轮对话历史+当前查询的结构化组合,目的是让模型“看到”需要记忆的信息(如用户名字、偏好、前文提到的细节)。
关键要素:
- 角色区分:明确标注“用户”和“助手”的发言(避免模型混淆角色);
- 时序关系:按对话顺序排列(确保模型理解“先发生什么,后发生什么”);
- 记忆点嵌入:包含需要模型记住的关键信息(如用户名字、提到的事件、偏好等)。
示例(格式化前的原始输入):
[
{
"role": "user"