题目
在给定的 m x n
网格 grid
中,每个单元格可以有以下三个值之一:
- 值 0 代表空单元格;
- 值 1 代表新鲜橘子;
- 值 2 代表腐烂的橘子。
每分钟,腐烂的橘子 周围 4 个方向上相邻 的新鲜橘子都会腐烂。
返回 直到单元格中没有新鲜橘子为止所必须经过的最小分钟数。如果不可能,返回 -1 。
示例 1
输入:grid = [[2,1,1],[1,1,0],[0,1,1]]
输出:4
示例 2
输入:grid = [[2,1,1],[0,1,1],[1,0,1]]
输出:-1
解释:左下角的橘子(第 2 行, 第 0 列)永远不会腐烂,因为腐烂只会发生在 4 个方向上。
示例 3
输入:grid = [[0,2]]
输出:0
解释:因为 0 分钟时已经没有新鲜橘子了,所以答案就是 0 。
提示
m == grid.length
n == grid[i].length
1 <= m, n <= 10
grid[i][j] 仅为 0、1 或 2
解题思路
返回直到单元格中没有新鲜橘子为止所必须经过的最小分钟数。翻译一下,实际上就是求腐烂橘子到所有新鲜橘子的最短路径。那么这道题使用 BFS,应该是毫无疑问的了。
-
一开始,我们找出所有腐烂的橘子,将它们放入队列,作为第 0 层的结点。
-
然后进行 BFS 遍历,每个结点的相邻结点可能是上、下、左、右四个方向的结点,注意判断结点位于网格边界的特殊情况。
-
由于可能存在无法被污染的橘子,我们需要记录新鲜橘子的数量。在 BFS 中,每遍历到一个橘子(污染了一个橘子),就将新鲜橘子的数量减一。如果 BFS 结束后这个数量仍未减为零,说明存在无法被污染的橘子。
class Solution {
public int orangesRotting(int[][] grid) {
// 边界 长宽
int M = grid.length;
int N = grid[0].length;
Queue<int[]> queue = new LinkedList<>();
// count 表示新鲜橘子的数量
int count = 0;
// 遍历二维数组 找出所有的新鲜橘子和腐烂的橘子
for (int r = 0; r < M; r++) {
for (int c = 0; c < N; c++) {
// 新鲜橘子计数
if (grid[r][c] == 1) {
count++;
// 腐烂的橘子就放进队列
} else if (grid[r][c] == 2) {
// 缓存腐烂橘子的坐标
queue.add(new int[]{r, c});
}
}
}
// round 表示腐烂的轮数,或者分钟数
int round = 0;
// 如果有新鲜橘子 并且 队列不为空
// 直到上下左右都触及边界 或者 被感染的橘子已经遍历完
while (count > 0 && !queue.isEmpty()) {
// BFS 层级 + 1
round++;
// 拿到当前层级的腐烂橘子数量, 因为每个层级会更新队列
int n = queue.size();
// 遍历当前层级的队列
for (int i = 0; i < n; i++) {
// 踢出队列(拿出一个腐烂的橘子)
int[] orange = queue.poll();
// 恢复橘子坐标
int r = orange[0];
int c = orange[1];
// ↑ 上邻点 判断是否边界 并且 上方是否是健康的橘子
if (r-1 >= 0 && grid[r-1][c] == 1) {
// 感染它
grid[r-1][c] = 2;
// 好橘子 -1
count--;
// 把被感染的橘子放进队列 并缓存
queue.add(new int[]{r-1, c});
}
// ↓ 下邻点 同上
if (r+1 < M && grid[r+1][c] == 1) {
grid[r+1][c] = 2;
count--;
queue.add(new int[]{r+1, c});
}
// ← 左邻点 同上
if (c-1 >= 0 && grid[r][c-1] == 1) {
grid[r][c-1] = 2;
count--;
queue.add(new int[]{r, c-1});
}
// → 右邻点 同上
if (c+1 < N && grid[r][c+1] == 1) {
grid[r][c+1] = 2;
count--;
queue.add(new int[]{r, c+1});
}
}
}
// 如果此时还有健康的橘子
// 返回 -1
// 否则 返回层级
if (count > 0) {
return -1;
} else {
return round;
}
}
}