『NLP学习笔记』如何理解Transformer中的Q,K,V以及Mask[补充深度学习中的FLOPs是什么?如何计算]

本文详细介绍了Transformer中的Q、K、V的理解,包括它们的线性变换、自注意力计算过程,解释了为什么叫做自注意力网络以及为何没有位置信息。此外,还阐述了Transformer中的mask机制,分为Attention Mask和Padding Mask,防止标签泄露并处理非定长序列。同时,文章补充了torch.max()和torch.topk()在深度学习中的作用。最后,解释了深度学习中的FLOPs概念及其计算方法,用于评估模型复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型前沿研究

感谢您的打赏,我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值