『NLP学习笔记』隐马尔可夫模型和维特比算法

本文介绍了隐马尔可夫模型(HMM)在命名实体识别中的应用,详细阐述了HMM的转移概率、发射概率和初始隐状态概率。通过HMM解决序列标注问题,并探讨了生成模型与判别模型的区别。此外,文章还讲解了维特比算法,用于找到最有可能的隐状态序列,并给出了实际代码实践链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

隐马尔可夫模型和维特比算法

一. 什么是隐马尔可夫模型(HMM)

1.1. 命名实体识别问题概述

  • 命名实体识别(Named Entity Recognition,NER),是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等等,并把我们需要识别的词在文本序列中标注出来。
  • 命名实体识别是信息抽取、问答系统、句法分析、机器翻译等NLP上层应用的重要基础工具,在自然语言处理技术走向实用化的领域中占有重要地位。
  • 信息抽取(IE)=命名实体识别+关系抽取,最终将非结构化文本转化为结构化知识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型前沿研究

感谢您的打赏,我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值