『大模型笔记』如何通过“持续批处理(Continuous Batching)”来扩展 LLM 应用的处理能力!

『大模型笔记』如何通过“持续批处理(Continuous Batching)”来扩展 LLM 应用的处理能力!

  • 如果你想部署一个大型语言模型(LLM)的推理接口,那么必须认真考虑_如何处理大量的请求。在传统的机器学习模型中,通常可以让请求排队,等待服务器空闲后再进行推理处理。然而,大型语言模型的每个请求可能需要几秒钟才能完成处理_。那么问题来了:我们如何扩展到每秒处理数百个请求呢?下面我们来详细讲解一下。

一、LLM 请求和传统模型的不同

  • 首先,需要明确的是,大型语言模型在处理请求时,与普通的机器学习模型有很大不同。主要的区别在于它的延迟非常高,因为模型需要时间来_逐步解码出完整的文本序列。所以,当我们向一个 LLM 发送多个请求时,如何应对这种解码过程带来的延迟就变得非常关键。很多时候,一个完整的文本生成可能需要几秒钟,我们不能指望每个请求都等待这么久。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型前沿研究

感谢您的打赏,我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值