Sebastian Raschka是一位外国知名的AI专家。特别在大型语言模型(LLM)研究方面,有着丰富的研究经验。近日DeepSeek-R1推理模型的推出,将“任何一款不是o1的模型快速蒸馏成具备强推理能力的o1”成为了可能,而且所需的成本和算力都大大降低。
但爆火有一个地方不好,就是很容易让我们迷失在炒作的海洋中,寻找不到有价值的信息。Raschka非常nice,昨天发布了一篇有关DeepSeek推理模型的深度总结文章,信息密度极高,内容来源包含大量的技术Paper,图文并茂,非常适合想了解DeepSeek R1背后真相的朋友们。
话不多说,这就为诸君奉上。
本文介绍了构建推理模型的四种主要方法,或者我们如何通过推理能力增强 LLM。我希望这能提供有价值的见解,并帮助您驾驭围绕该主题的快速发展的文献和炒作。
2024 年,LLM领域的专业化程度不断提高。除了预训练和微调之外,我们还见证了从 RAG 到代码助手等专业应用程序的兴起。我预计这一趋势将在 2025 年加速,并更加注重特定领域和应用程序的优化(即“专业化”)。
第 1-3 阶段是开发 LLM 的常见步骤。 第 4 阶段针对特定用例专门开发 LLM。
推理模型的开发就是这些专业化之一。这意味着我们改进 LLM,使其擅