【Gazebo】在 world 中添加 UR5 机器人和 Kinect V2 深度相机

本文介绍了如何在 Gazebo 虚拟环境中添加 UR5 机器人模型和 Kinect V2 深度相机。首先提供了 UR5 和 Kinect V2 的模型下载来源,然后讲解了修改方法,包括复制 `ur5.launch` 文件内容到新文件并调整机械臂初始位姿。最后展示了启动新配置后的运行效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

下载链接

UR5 模型链接:https://github.com/ros-industrial/universal_robot
Kinect V2 模型链接:https://github.com/wangxian4423/kinect_v2_udrf

修改方法

  • 将下图中的内容复制:
    在这里插入图片描述
  • 粘贴到下图位置,并注释掉其中一行:
    在这里插入图片描述
  • 这里我复制 ur5.launch 的内容到我新建的文件中,并修改下面的内容以改变机械臂的初始位姿:
    在这里插入图片描述
  • 运行新建的启动文件:
### UR5 Gazebo 深度相机 象棋抓取仿真 步骤教程 为了在Gazebo仿真环境中使用UR5机器人深度相机实现象棋抓取功能,以下是详细的步骤说明: #### 1. 安装必要的依赖项 确保安装了所有必需的软件包。可以通过以下命令完成: ```bash sudo apt-get install ros-noetic-gazebo-ros-pkgs ros-noetic-universal-robots ros-noetic-moveit ``` 这一步会安装Universal Robots的相关ROS包以及MoveIt框架。 #### 2. 创建工作空间并编译项目 进入您的Catkin工作区目录,并执行编译操作: ```bash cd ~/ur5e_ws/ catkin_make source devel/setup.bash ``` 此过程初始化了一个可以运行自定义配置的工作环境[^1]。 #### 3. 准备URDF/XACRO文件 创建一个描述UR5机械臂、Robotiq夹爪和Kinect V2摄像头组合的XACRO文件。该文件应包含以下部分: - **UR5机械臂模型**:通过`universal_robot`包中的标准URDF模板引入。 - **Robotiq夹爪模型**:从`robotiq_85_gripper`包导入。 - **Kinect V2摄像头模型**:可以从`gazebo_ros_pkgs`或其他第三方资源库中找到合适的插件。 示例代码片段如下所示: ```xml <?xml version="1.0"?> <robot xmlns:xacro="http://www.ros.org/wiki/xacro"> <!-- 导入UR5 --> <xacro:include filename="$(find ur_description)/urdf/ur5.urdf.xacro"/> <!-- 添加Robotiq夹爪 --> <xacro:macro name="robotiq_hand" params="prefix"> ... </xacro:macro> <!-- 设置Kinect传感器 --> <link name="camera_link"> <visual> <origin xyz="0 0 0" rpy="0 0 0"/> <geometry> <box size="0.05 0.05 0.05"/> </geometry> </visual> <sensor type="depth_camera" name="kinect_v2_sensor"> <plugin name="gazebo_ros_depth_camera_controller" filename="libgazebo_ros_openni_kinect.so"> <alwaysOn>true</alwaysOn> <updateRate>30.0</updateRate> <imageTopicName>/camera/image_raw</imageTopicName> <pointCloudTopicName>/camera/points</pointCloudTopicName> </plugin> </sensor> </link> <!-- 组合各部件 --> <joint name="hand_joint" type="fixed"> <parent link="ee_link"/> <child link="robotiq_base_link"/> </joint> <joint name="camera_mount_joint" type="fixed"> <parent link="tool0"/> <child link="camera_link"/> </joint> </robot> ``` #### 4. 配置Launch文件 设计一个`.launch`文件来启动整个仿真场景。这个文件应该包括以下几个模块: - 加载URDF模型至参数服务器; - 初始化Gazebo节点及其物理引擎; - 插入预设对象(如国际象棋棋子)到虚拟世界中。 下面是一个简单的例子: ```xml <launch> <!-- 将URDF上传到参数服务器 --> <param name="robot_description" command="$(find xacro)/xacro --inorder $(find your_package_name)/urdf/combined_model.urdf.xacro"/> <!-- 启动Gazebo GUI --> <node pkg="gazebo_ros" type="gazebo" respawn="false" output="screen" name="gazebo"/> <!-- 插入机器人实例 --> <node pkg="gazebo_ros" type="spawn_model" args="-urdf -model my_ur5_with_cam_and_grip -param robot_description" /> <!-- 可视化调试工具RViz (可选)--> <node pkg="rviz" type="rviz" args="-d $(find your_package_name)/config/default.rviz"/> <!-- 发布目标物体位置话题(假设已知坐标系下的棋盘格布局数据) --> <node pkg="your_custom_node_pkg" type="chess_pieces_spawner.py" output="screen"/> </launch> ``` #### 5. 实现运动规划逻辑 利用MoveIt!或者Trajectory Controller API控制末端效应器到达指定的目标姿态。对于每步动作序列,需考虑碰撞检测与路径优化等问题[^3]。 #### 6. 处理图像识别任务 借助OpenCV或TensorFlow Lite等计算机视觉算法解析来自深度摄像机的数据流,定位各个棋子的确切三维坐标[^2]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宇宙爆肝锦标赛冠军

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值