说明
缓存主要用来减少网络IO跟磁盘IO,以此来提高系统的吞吐量。
接入层缓存
特点:减少磁盘IO,减少网络IO
技术:lua+nginx,openresty
说明:需要会写lua脚本,主要就是将信息存在Nginx缓存中,如果用户请求的信息存在则直接返回。因此哪怕后台系统挂了也能返回用户数据。
本地缓存
特点:减少网络IO
技术:谷歌的guava/cache
CacheBuilder.newBuilder()
//设置本地缓存容器的初始容量
.initialCapacity(10)
//设置本地缓存的最大容量
.maximumSize(500)
//设置写缓存后多少秒过期
.expireAfterWrite(60, TimeUnit.SECONDS).build();
说明:相比于Java自带的缓存如ConcurrentHashMap,guava中的缓存可以设置初始化容量、最大容量、过期时间。
内存级别缓存
特点:减少磁盘IO
技术:redis
说明:通过对redis的访问来减少对数据里的依赖
问题:
-
缓存击穿:key过期,同一个过期的key有大量请求,直接到DB上
使用分布式锁:在未命中缓存时,通过加锁避免大量请求访问数据库
-
缓存穿透:用户请求的数据,缓存跟数据库中都不存在
使用布隆过滤器:项目启动时先将数据初始化到布隆过滤器中,用户请求的数据先判断布隆过滤器中是否存在,不存在直接返回.
-
缓存雪崩:缓存同一时间失效,造成大量请求直接访问数据库
缓存的失效时间加上一个随机数,使得缓存内容不会同时过期
引入redis分布式锁
技术:使用redisson框架
说明:不用该框架的话,需要注意
1.“加锁+设置超时时间”和“获得锁+删除锁”的原子操作
redisson框架使用lua脚本
2.业务代码的执行时间超过了锁的超时时间,也就是如何给锁续命
redisson框架里有个watchdog线程进行锁续命操作
总结
请求->接入层->本地缓存->redis缓存->分布式锁->数据库
代码
PmsProductParam productInfo = null;
//先从本地缓存guava-cache中获取
productInfo = LocalCache.get(RedisKeyPrefixConst.PRODUCT_DETAIL_CACHE + id);
if (null != productInfo) {
return productInfo;
}
//再从redis中获取
productInfo = redisOpsUtil.get(RedisKeyPrefixConst.PRODUCT_DETAIL_CACHE + id, PmsProductParam.class);
if (productInfo != null) {
log.info("get redis productId:" + productInfo);
cache.setLocalCache(RedisKeyPrefixConst.PRODUCT_DETAIL_CACHE + id, productInfo);
return productInfo;
}
//通过分布式锁去数据库里查数据,再塞入缓存中
RLock lock = redission.getLock(lockPath + id);
try {
if (lock.tryLock()) {
productInfo = portalProductDao.getProductInfo(id);
if (null == productInfo) {
return null;
}
redisOpsUtil.set(RedisKeyPrefixConst.PRODUCT_DETAIL_CACHE + id, productInfo, 3600, TimeUnit.SECONDS);
cache.setLocalCache(RedisKeyPrefixConst.PRODUCT_DETAIL_CACHE + id, productInfo);
} else {
productInfo = redisOpsUtil.get(RedisKeyPrefixConst.PRODUCT_DETAIL_CACHE + id, PmsProductParam.class);
if (productInfo != null) {
cache.setLocalCache(RedisKeyPrefixConst.PRODUCT_DETAIL_CACHE + id, productInfo);
}
}
} finally {
if (lock.isLocked()) {
if (lock.isHeldByCurrentThread())
lock.unlock();
}
}