vLLM 和 Xinference、Ollama 对 .safetensors 和 .gguf 格式的支持对比

1. vLLM 的支持情况
  • .safetensors 格式
    vLLM 原生支持通过 --load-format 参数加载 .safetensors 格式的模型权重。用户可通过设置 --load-format safetensors 直接加载此类文件,例如在部署时使用 vllm serve 命令,并指定模型路径。vLLM 默认优先尝试加载 .safetensors 格式(若存在),否则回退到 PyTorch 的 .bin 格式。

  • .gguf 格式
    vLLM 从 0.6.2 版本开始支持 .gguf 格式的模型加载。需通过 --load-format gguf 显式指定格式,并搭配对应的量化参数(如 Q4_K_M)。例如,在 AMD GPU 上使用 ROCm 后端时,vLLM 能高效运行量化后的 .gguf 模型,且性能优于部分竞品。

2. Xinference 的支持情况
  • .safetensors 格式
    Xinference 通过集成 Hugging Face 生态,默认支持 .safetensors 格式的模型加载(尤其是 Transformer 架构的模型)。例如,用户可直接从 Hugging Face 或 ModelScope 下载 .safetensors 模型,通过 xinference launch 命令部署。

  • .gguf 格式
    Xinference 通过集成 llama.cpp 引擎支持 .gguf 格式。需在安装时启用 llama.cpp 后端(如设置 CMAKE_ARGS 适配硬件),并通过 Modelfile 指定 .gguf 文件路径。例如,在 CPU 或 Apple M 芯片上运行时,Xinference 可通过内存映射(mmap)高效加载量化后的 .gguf 模型。

3. Ollama 的支持情况
  • .safetensors 格式
    Ollama 支持通过 Safetensors 适配器 微调后的模型导入。需在 Modelfile 中使用 ADAPTER 指令指向包含 .safetensors 文件的目录,例如将 Lora 微调后的适配器与基础模型结合使用。但需确保适配器与基础模型架构(如 Llama、Mistral)兼容。

  • .gguf 格式
    Ollama 原生支持 .gguf 格式的模型部署。用户可直接在 Modelfile 中通过 FROM 指令指定 .gguf 文件路径(例如 FROM ./model.gguf),并利用 ollama create 命令注册模型。此外,Ollama 支持对 FP16/FP32 模型自动量化为 .gguf(如 Q4_K_M),优化显存占用。


总结

框架/格式.safetensors.gguf
vLLM原生支持(需指定 --load-format支持(需显式指定格式及量化参数)
Xinference通过 Hugging Face 默认支持通过 llama.cpp 引擎支持
Ollama支持适配器导入(非原生权重)原生支持(直接加载或自动量化生成)

适用场景建议

  • vLLM:适合需要高性能推理且依赖 GPU 资源的场景(如生产环境 API 服务)。
  • Xinference:适合多模态模型部署及 CPU/边缘设备上的灵活推理。
  • Ollama:适合本地快速部署量化模型,尤其适合个人开发者或资源受限环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学亮编程手记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值