337. 打家劫舍 III

本文详细解析了LeetCode上的337题打家劫舍III,通过动态规划算法解决树形结构的问题。文章提供了清晰的代码示例,展示了如何利用后序遍历进行状态转移,以求得树形结构中最大收益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

337. 打家劫舍 III
在这里插入图片描述

题解:动态规划

在这里插入图片描述

1. 解释一:

在这里插入图片描述

root[0] = Math.max(rob(root.left)[0], rob(root.left)[1]) + Math.max(rob(root.right)[0], rob(root.right)[1])
root[1] = rob(root.left)[0] + rob(root.right)[0] + root.val;

2. 解释二:

在这里插入图片描述

3. 解释三:

在这里插入图片描述

代码:动态规划

public class code337 {

    // 树的后序遍历

    public static int rob(TreeNode root) {
        // 计算当前节点偷与不偷所能获得收益,结果存在数组res中
        int res[] = dfs(root);
        // 根据题意可知需取其中最大的
        return Math.max(res[0], res[1]);
    }

    public static int[] dfs(TreeNode root)
    {
        // 如果当前节点为空节点,则其结果为0
        if(root == null)
        {
            int temp[] = { 0, 0 };
            return temp;
        }
        // 分类讨论的标准是:当前结点偷或者不偷
        // 由于需要后序遍历,所以先计算左右子结点,然后计算当前结点的状态值

        // 计算当前节点左儿子偷与不偷所能获得的收益
        int left[] = dfs(root.left);
        // 计算当前节点右儿子偷与不偷所能获得的收益
        int right[] = dfs(root.right);

        // dp[0]:以当前 node 为根结点的子树能够偷取的最大价值,规定 node 结点不偷
        // dp[1]:以当前 node 为根结点的子树能够偷取的最大价值,规定 node 结点偷
        int dp[] = new int[2];

        // 不偷,下家可偷可不偷,取决于收益大小
        // 不偷当前节点所能获得的最大收益 = 左儿子所能获得的最大收益 + 右儿子所能获得的最大收益
        // 儿子所能获得最大收益为:max(不偷当前儿子所能获得最大收益,偷当前儿子所能获得最大收益)
        dp[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
        // 偷,下家就不能偷了
        // 偷当前节点所能获得的最大收益= 偷当前节点的钱 + 不偷左儿子所获得的钱 +不偷右儿子所获得的钱
        dp[1] = root.val + left[0] + right[0];

        return dp;
    }

    public static void main(String[] args) {
        Integer nums1[] = { 3, 2, 3, null, 3, null, 1 };
        TreeNode root1 = ConstructTree.constructTree(nums1);
        TreeOperation.show(root1);

        System.out.println("***************************************");

        int res1 = rob(root1);
        System.out.println(res1);

        System.out.println("***************************************");

        Integer nums2[] = { 3, 4, 5, 1, 3, null, 1 };
        TreeNode root2 = ConstructTree.constructTree(nums2);
        TreeOperation.show(root2);

        System.out.println("***************************************");

        int res2 = rob(root2);
        System.out.println(res2);

        System.out.println("***************************************");

        Integer nums3[] = { 2, 1, 3, null, 4 };
        TreeNode root3 = ConstructTree.constructTree(nums3);
        TreeOperation.show(root3);

        System.out.println("***************************************");

        int res3 = rob(root3);
        System.out.println(res3);

        System.out.println("***************************************");

    }
}

参考:

  1. 打家劫舍 III
  2. 三种方法解决树形动态规划问题-从入门级代码到高效树形动态规划代码实现
  3. 树形 dp 入门问题(理解「无后效性」和「后序遍历」)
  4. 通用思路团灭打家劫舍问题
  5. 三种解法+多图演示 337. 打家劫舍 III
  6. 337. 打家劫舍 III
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dev_zyx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值