数据挖掘原理与算法 Agnes算法

本文深入探讨了一种基于暴力计算的聚类算法实现,详细解释了如何通过比较所有可能的节点组合来寻找最小距离,从而完成数据点的聚类过程。尽管此方法未进行时间优化,但在小数据集上能有效展示聚类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

暴力解决方法,没考虑优化时间,仅仅是暴力实现,数据量很大的话会超时。

#include<bits/stdc++.h>
using namespace std;
int n,k;
struct Node{
	int x,y;
	int id;
};
struct Node nodes[1005];
vector<struct Node> cu[1005];
double dis(int x,int y)
{
	return sqrt((nodes[x].x-nodes[y].x)*(nodes[x].x-nodes[y].x)+(nodes[x].y-nodes[y].y)*(nodes[x].y-nodes[y].y));
}
bool cmp(vector<struct Node> x,vector<struct Node> y)
{
	return x.size()<y.size();
}
bool cmp1(vector<struct Node> x,vector<struct Node> y)
{
	return x.size()>y.size();
}
bool cmp2(struct Node x,struct Node y)
{
	return x.id<
	y.id;
}
void Agnes()
{
	int N=n;
	while(N>k)
	{
		double mindis=9999;
		int tar1=-1,tar2=-1;
		for(int i=0;i<n;i++)
		{
			if(!cu[i].empty())
			for(int j=i+1;j<n;j++)
			{
				if(!cu[j].empty())
				for(int m=0;m<cu[i].size();m++)
				{
					for(int n=0;n<cu[j].size();n++)
					{
						double tempdis=dis(cu[i][m].id,cu[j][n].id);
						if(mindis>tempdis)
						{
							mindis=tempdis;
							tar1=i;
							tar2=j;
						}
					}
				}
			}
		}
		for(int i=0;i<cu[tar2].size();i++)
		{
			struct Node temp=cu[tar2][i];
			cu[tar1].push_back(temp);	
		}	
		cu[tar2].clear();
		sort(cu,cu+n,cmp);
		int cnt=0;
		for(int i=0;i<n;i++)
			if(!cu[i].empty())
				cnt++;
		N=cnt;
	}
	
}
int main()
{
	cin>>n>>k;
	for(int i=0;i<n;i++)
	{
		cin>>nodes[i].x>>nodes[i].y;
		nodes[i].id=i;
		cu[i].push_back(nodes[i]);
	}
	Agnes();
	sort(cu,cu+n,cmp1);
	for(int i=0;i<n;i++)
		if(!cu[i].empty())
		{
			sort(cu[i].begin(),cu[i].end(),cmp2);
			for(int j=0;j<cu[i].size();j++)
				if(j==0)
					cout<<"{"<<cu[i][j].id+1<<" ";
				else if(j==cu[i].size()-1)
					cout<<cu[i][j].id+1<<"}"<<endl;
				else
					cout<<cu[i][j].id+1<<" ";	
			if(cu[i].size()==1)
				cout<<"}"<<endl;
		}	
	return 0;
}
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ayakanoinu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值