The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
Given any two nodes in a binary tree, you are supposed to find their LCA.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the binary tree, respectively. In each of the following two lines, N distinct integers are given as the inorder and preorder traversal sequences of the binary tree, respectively. It is guaranteed that the binary tree can be uniquely determined by the input sequences. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
Output Specification:
For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the binary tree, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found…
Sample Input:
6 8
7 2 3 4 6 5 1 8
5 3 7 2 6 4 8 1
2 6
8 1
7 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 6 is 3.
8 is an ancestor of 1.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.
题目大意:
给出中序序列和前序序列,再给出两个点,求这两个点的最近公共祖先
思路:
中序遍历:左根右
前序遍历:根左右
不需要建树
每次通过前序遍历找当前根,通过中序遍历找左/右子树
若a和b在根结点的某一边,则a和b的LCA在当前根结点的左/右子树寻找;
如果a和b在当前根结点的两边,在当前根结点就是a和b的LCA;
#include <iostream>
#include <vector>
#include <algorithm>
#include <sstream>
#include <cmath>
#include <cstdio>
#include <set>
#include <unordered_map>
using namespace std;
const int maxn = 10010;
int pre[maxn], in[maxn]; // 前序遍历、中序遍历
int n, m;
set<int> s;
unordered_map<int, int> map1;
void LCA(int a, int b, int inL, int inR, int preRT)
{
if (inL > inR) return;
int inRT = map1[pre[preRT]], inA = map1[a], inB = map1[b];
// ab同在根左边
if (inA < inRT && inB < inRT) LCA(a, b, inL, inR-1, preRT+1);
// ab同在根右边
else if (inA > inRT && inB > inRT) LCA(a, b, inRT+1, inR, preRT+inRT-inL+1);
// a是b的祖先
else if (inA == inRT) printf ("%d is an ancestor of %d.\n", a, b);
// b是a的祖先
else if (inB == inRT) printf ("%d is an ancestor of %d.\n", b, a);
// ab在根两边
else if ((inA < inRT) + (inB < inRT) == 1) printf("LCA of %d and %d is %d.\n", a, b, pre[preRT]);
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= m; i ++)
{
cin >> in[i];
map1[in[i]] = i;
}
for (int i = 1; i <= m; i ++)
{
cin >> pre[i];
s.insert(pre[i]);
}
while (n --)
{
int a, b;
cin >> a >> b;
if (!s.count(a) || !s.count(b))
{
if (s.count(a)+s.count(b) == 0) printf("ERROR: %d and %d are not found.\n", a, b);
else printf("ERROR: %d is not found.\n", s.count(a)?b:a);
}
else LCA(a, b, 1, m, 1);
}
return 0;
}