The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
A binary search tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node’s key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
- Both the left and right subtrees must also be binary search trees.
Given any two nodes in a BST, you are supposed to find their LCA.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
Output Specification:
For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the BST, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found…
Sample Input:
6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.
题目大意:
给定一棵BST的前序遍历
判断两个结点的LCA
分析:
不用建树,因为仅根据前序遍历就可以唯一地确定一颗BST(BST结点的左子树仅包含键小于节点键的结点,
结点的右子树仅包含键大于或等于节点键的结点)
对于BST,结点u, v的LCA一定满足:u、v中一个小于LCA,另一个大于LCA;特殊情况是u/v是v/u的LCA
因为是前序遍历,对于任何一棵子树(以u,v的LCA为根的子树),从左向右遍历一定先遍历到当前子树的根,即我们要找的当前LCA
做题记录:
每个结点是int范围,包括负数,不再能用vis[]数组记录每个结点是否出现过,这时使用哈希表unordered_map<int, bool>
#include <iostream>
#include <cstdio>
#include <unordered_map>
using namespace std;
const int maxn = 10010;
int pre[maxn];
unordered_map<int, bool> map1;
int n, m;
void findLCA(int u, int v)
{
for (int i = 1; i <= n; i ++)
{
int rt = pre[i];
if ((rt < u && rt > v) || (rt > u && rt < v))
{
printf("LCA of %d and %d is %d.\n", u, v, rt);
return;
}
else if (rt == u)
{
printf("%d is an ancestor of %d.\n", u, v);
return;
}
else if (rt == v)
{
printf("%d is an ancestor of %d.\n", v, u);
return;
}
}
}
int main()
{
cin >> m >> n;
for (int i = 1; i <= n; i ++)
{
cin >> pre[i];
map1[pre[i]] = true;
}
while (m --)
{
int u, v;
cin >> u >> v;
if (!map1[u] && !map1[v]) printf("ERROR: %d and %d are not found.\n", u, v);
else if (!map1[u]) printf("ERROR: %d is not found.\n", u);
else if (!map1[v]) printf("ERROR: %d is not found.\n", v);
else findLCA(u, v);
}
return 0;
}