python —— 参数传递

本文探讨Python中的参数传递机制,重点在于可变对象(如列表)和不可变对象(如整数、字符串、元组)的区别。在Python中,变量是对象的引用,对不可变对象的操作会创建新对象,而对可变对象的操作则会直接修改原对象。通过示例代码展示了在函数中传递不可变和可变对象实例时的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在 python 中,类型属于对象,变量是没有类型的:

a=[1,2,3]
a="Runoob"

以上代码中,[1,2,3] 是 List 类型,”Runoob” 是 String 类型,而变量 a 是没有类型,她仅仅是一个对象的引用(一个指针),可以是 List 类型对象,也可以指向 String 类型对象。


可更改(mutable)与不可更改(immutable)对象

不可变类型:

  1. 变量赋值 a=5 后再赋值 a=10,这里实际是新生成一个 int 值对象 10,再让 a 指向它,而 5 被丢弃,不是改变a的值,相当于新生成了a。

  2. 类似 c++ 的值传递,如 整数、字符串、元组。如fun(a),传递的只是a的值,没有影响a对象本身。比如在 fun(a)内部修改 a 的值,只是修改另一个复制的对象,不会影响 a 本身。

可变类型:

  1. 变量赋值 la=[1,2,3,4] 后再赋值 la[2]=5 则是将 list la 的第三个元素值更改,本身la没有动,只是其内部的一部分值被修改了。

  2. 类似 c++ 的引用传递,如 列表,字典。如 fun(la),则是将 la 真正的传过去,修改后fun外部的la也会受影响


python 传不可变对象实例

def ChangeInt( a ):
    a = 10

b = 2
ChangeInt(b)
print b # 结果是 2

实例中有 int 对象 2,指向它的变量是 b,在传递给 ChangeInt 函数时,按传值的方式复制了变量 b,a 和 b 都指向了同一个 Int 对象,在 a=10 时,则新生成一个 int 值对象 10,并让 a 指向它。

python 传可变对象实例

def changeme( mylist ):
   "修改传入的列表"
   mylist.append([1,2,3,4]);
   print "函数内取值: ", mylist
   return

# 调用changeme函数
mylist = [10,20,30];
changeme( mylist );
print "函数外取值: ", mylist

实例中传入函数的和在末尾添加新内容的对象用的是同一个引用,故输出结果如下:

函数内取值:  [10, 20, 30, [1, 2, 3, 4]]
函数外取值:  [10, 20, 30, [1, 2, 3, 4]]
### Python 函数参数传递机制解释 在 Python 中,函数参数的传递机制主要涉及 **值传递** 和 **引用传递** 的概念。以下是对其具体含义以及实现细节的详细说明。 #### 1. 值传递(Value Passing) 当一个不可变对象(如整数、字符串、元组等)作为参数传递到函数中时,实际上是将该对象的一个副本传递给了函数中的形参变量[^1]。这意味着即使在函数内部修改了形参变量的值,也不会影响原始的实际参数。 示例代码如下: ```python def modify_value(a): a += 5 print(f"函数内 a = {a}") x = 10 modify_value(x) print(f"函数外 x = {x}") ``` 运行上述代码的结果表明,尽管 `a` 在函数内被修改,但外部的 `x` 并未受到影响[^3]。 --- #### 2. 引用传递(Reference Passing 或 Address Passing) 对于可变对象(如列表、字典等),Python 使用的是引用传递的方式。在这种情况下,函数接收到的是指向实际数据结构的内存地址,而不是数据本身的拷贝。因此,在函数内部对形参所做的任何更改都会反映到原始的对象上。 以下是一个例子展示如何操作可变类型的参数: ```python def modify_list(lst): lst.append(4) my_list = [1, 2, 3] modify_list(my_list) print(f"修改后的 my_list = {my_list}") ``` 这里可以看到,`lst` 被附加了一个新元素 `4`,而这一变化同样体现在原列表 `my_list` 上。 --- #### 3. 可变数量参数 (*args 和 **kwargs) 除了基本的值传递和引用传递之外,Python 还支持灵活处理不定数量参数的功能。通过使用 `*args` 和 `**kwargs`,可以分别接收位置参数组成的元组与关键字参数构成的字典[^4]。 例如: ```python def flexible_args(*args, **kwargs): print("Positional arguments:", args) print("Keyword arguments:", kwargs) flexible_args(1, 2, key="value", another_key=42) ``` 此段程序展示了如何利用这种特性简化复杂场景下的接口设计。 --- ### 总结 综上所述,理解 Python 中函数参数的具体行为取决于所使用的数据类型及其属性——即区分不变量与可变量之间的差异至关重要。此外,掌握特殊形式的参数声明方法有助于构建更加强大且适应性强的应用程序逻辑[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值